Answer:

Explanation:
let
be the mass attached, let
be the spring constant and let
be the positive damping constant.
-By Newton's second law:

where
is the displacement from equilibrium position. The equation can be transformed into:
shich is the equation of motion.
Given :
Two forces act on a 6.00-kg object. One of the forces is 10.0 N.
Acceleration of object 2 m/s².
To Find :
The greatest possible magnitude of the other force.\
Solution :
Let, other force is f.
So, net force, F = 10 + f.
Now, acceleration is given by :

Therefore, the greatest possible magnitude of the other force is 2 N.
Hence, this is the required solution.
<span>It's close to the sun without much atmosphere, so it's characterized by </span><span>very extreme temperatures.
Happy studying ^_^</span>
Answer:
q₃=5.3nC
Explanation:
First, we have to calculate the force exerted by the charges q₁ and q₂. To do this, we use the Coulomb's Law:

Since we know the net force, we can use this to calculate q₃. As q₁ is at the right side of q₃ and q₁ and q₃ have opposite signs, the force F₁₃ points to the right. In a similar way, as q₂ is at the left side of q₃, and q₂ and q₃ have equal signs, the force F₂₃ points to the right. That means that the resultant net force is the sum of these two forces:

In words, the value of q₃ must be 5.3nC.
That would be the second law