1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
3 years ago
6

Which of the following statements best describes chromatic aberration?

Physics
1 answer:
Rzqust [24]3 years ago
6 0

Answer:

The answer is A/B, they're the same answer anyways.

Explanation:

Chromatic aberration is the result when the lens fail to focus all the colors on the same point. The light then focuses in different points,and could lead to causing two images at once. The main culprit of this is usually dispersion.

You might be interested in
A mass of 3.6 kg oscillate on a horizontal spring with a spring constant of 160 N/m.
Darya [45]

Answer:

48.7 J

Explanation:

For a mass-spring system, there is a continuous conversion of energy between elastic potential energy and kinetic energy.

In particular:

- The elastic potential energy is maximum when the system is at its maximum displacement

- The kinetic energy is maximum when the system passes through the equilibrium position

Therefore, the maximum kinetic energy of the system is given by:

KE=\frac{1}{2}mv^2

where

m is the mass

v is the speed at equilibrium position

In this problem:

m = 3.6 kg

v = 5.2 m/s

Therefore, the maximum kinetic energy is:

KE=\frac{1}{2}(3.6)(5.2)^2=48.7 J

6 0
3 years ago
Euglena are _______.<br><br> A heterotrophs<br><br> B autotrophs
zysi [14]
The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food).
6 0
3 years ago
What colors are in a 24 pack of crayola crayons?
Xelga [282]
Blue puprle white gold organs yellow red gray brown green pink black tan light blue
3 0
4 years ago
Consider the same roller coaster. It starts at a height of 40.0 m but once released, it can only reach a height of 25.0 m above
poizon [28]

Answer:

The magnitude of the frictional force between the car and the track is 367.763 N.

Explanation:

The roller coster has an initial gravitational potential energy, which is partially dissipated by friction and final gravitational potential energy is less. According to the Principle of Energy Conservation and Work-Energy Theorem, the motion of roller coster is represented by the following expression:

U_{g,1} = U_{g,2} + W_{dis}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

W_{dis} - Dissipated work due to friction, measured in joules.

Gravitational potential energy is described by the following formula:

U = m \cdot g \cdot y

Where:

m - Mass, measured in kilograms.

g - Gravitational constant, measured in meters per square second.

y - Height with respect to reference point, measured in meters.

In addition, dissipated work due to friction is:

W_{dis} = f \cdot \Delta s

Where:

f - Friction force, measured in newtons.

\Delta s - Travelled distance, measured in meters.

Now, the energy equation is expanded and frictional force is cleared:

m \cdot g \cdot (y_{1} - y_{2}) = f\cdot \Delta s

f = \frac{m \cdot g \cdot (y_{1}-y_{2})}{\Delta s}

If m = 1000\,kg, g = 9.807\,\frac{m}{s^{2}}, y_{1} = 40\,m, y_{2} = 25\,m and \Delta s = 400\,m, then:

f = \frac{(1000\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (40\,m-25\,m)}{400\,m}

f = 367.763\,N

The magnitude of the frictional force between the car and the track is 367.763 N.

7 0
3 years ago
A 12.0-cm long cylindrical rod has a uniform cross-sectional area A = 5.00 cm2. However, its density increases linearly from 2.6
andriy [413]

Answer:

(a) The constants required describing the rod's density are B=2.6 and C=1.325.

(b) The mass of the road can be found using A\int_0^{12}\left(B+Cx)dx

Explanation:

(a) Since the density variation is linear and the coordinate x begins at the low-density end of the rod, we have a density given by

2.6\frac{g}{cm^3}+\frac{18.5\frac{g}{cm^3}-2.6\frac{g}{cm^3}}{12 cm}x = 2.6\frac{g}{cm^3}+1.325x\frac{g}{cm^2}

recalling that the coordinate x is measured in centimeters.

(b) The mass of the rod can be found by having into account the density, which is x-dependent, and the volume differential for the rod:

m=\int\rho dv=\int\left(B+Cx\right)Adx=5\int_0^{12}\left(2.6+1.325x\right)dx=126.6,

hence, the mass of the rod is 126.6 g.

7 0
3 years ago
Other questions:
  • The membrane that surrounds a certain type of living cell has a surface area of 4.3 x 10-9 m2 and a thickness of 1.1 x 10-8 m. A
    11·1 answer
  • HELPPPPP WILL GIVE BRAINLIEST!!!
    9·2 answers
  • Which of the following terms best describes why a skier sliding down a hill eventually comes to a stop?
    15·2 answers
  • What causes glowsticks to give off light?
    14·1 answer
  • The atom in the diagram has a neutral charge how many protons does it have
    15·1 answer
  • Which phrase best describes the time period in which the current body of scientific knowledge was developed? A. Just over the la
    10·1 answer
  • A geological process Select one: A. is limited to acting on rocks B. shapes and changes the earth C. starts in the outer atmosph
    8·1 answer
  • American football uses a field that is 100.0yd long, whereas the a soccer field is 100.0m long. Which field is longer and by how
    5·2 answers
  • PLEASE HELP : What happens in obese mice? (Physiology)
    13·1 answer
  • A bicyclist moves along a straight line with an initial velocity vo and slows downs. Which of the following the best describes t
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!