<h2>The acceleration of car is 0.2 ms⁻²</h2>
Explanation:
When the car moves , the distance covered is calculated by the relation
S = u t +
a t²
In this question u = 0 , because car was at rest initially
Thus S =
a t²
here S is displacement and a is the acceleration of car
Therefore 360 =
a ( 60 )²
Because time taken is one minute or 60 seconds
Therefore a = 
or a = 0.2 m s⁻²
Answer:
Elastic potential energy, 
Explanation:
Charge, 
Potential, V = 50 V
It is required to find the electric potential energy in a capacitor stored in it. The formula of the electric potential energy in a capacitor is given by :

So, the electric potential energy stored in the capacitor is 
Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m
we only see wavelengths from 400–700 nanometers.
Answer:
Before sled starts to move it has a potential energy due to the elevation...and then that potential energy converted to kinetic energy due to presence of a velocity...the sled will continue to move if their is no resesive force...but however friction force is presence that cause the sled to stop....