Answer:
There is 5.56 g of gold for every 1 g of chlorine
Explanation:
The ratio is the relationship between two numbers, defined as the ratio of one number to the other. So, the ratio between two numbers a and b is the fraction 
You know that a compound has 15.39 g of gold for every 2.77 g of chlorine. This can be expressed by the ratio:

The proportion is the equal relationship that exists between two reasons and is represented by: 
This reads a is a b as c is a d.
To calculate the amount of gold per 1 g of chlorine, the following proportion is expressed:

Solving for the mass of gold gives:

mass of gold= 5.56 grams
So, <u><em>there is 5.56 g of gold for every 1 g of chlorine</em></u>
Answer: Reducing agent in the given reaction is
.
Explanation:
A reducing agent is defined as an element which tends to lose electrons to other element leading to an increase in its oxidation number.
In the given reaction, oxidation state of sulfur in
is +2 and
has 0 oxidation state.
In
oxidation state of S is 2.5 and in
oxidation state of I is -1.
Since, an increase in oxidation state of S is occurring from +2 to +2.5. Hence, it is acting as a reducing agent.
Thus, we can conclude that reducing agent in the given reaction is
.
Answer:
Discovery of electron while studying the properties of cathode ray by Thomson suggested that Dalton atomic model should be revised.
Explanation:
Electron was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
He constructed the glass tube and create vacuum in it. He applied electric current between electrodes. He noticed that a ray of particles coming from cathode to wards positively charged anode. This ray was cathode ray.
Properties of cathode ray:
The ray is travel in straight line.
The cathode ray is independent of composition of cathode.
When electric field is applied cathode ray is deflected towards the positively charged plate.
Hence it was consist of negatively charged particles.
Symbol= e-
Mass= 9.10938356×10-31 Kg
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Answer:
Approximately
.
Explanation:
Make use of the molar mass data (
) to calculate the number of moles of molecules in that
of
:
.
Make sure that the equation for this reaction is balanced.
Coefficient of
in this equation:
.
Coefficient of
in this equation:
.
In other words, for every two moles of
that this reaction consumes, two moles of
would be produced.
Equivalently, for every mole of
that this reaction consumes, one mole of
would be produced.
Hence the ratio:
.
Apply this ratio to find the number of moles of
that this reaction would have produced:
.
Answer:
It increases by a factor of eight
Explanation:
When temperature is held constant, gas pressure changes according the volume, in undirectly proportion.
Volume increases → Pressure decreases
Volume decreases → Pressure increases
As volume gas, was reducted from 4L to 0.5L, it was reduced by 1/8, so the pressure gas was increased by a factor of eight.