<span>A full outer shell has 8 valence electrons, and since each nitrogen has only five, they both need three more to get to a full outer shell. However, since they're the same atom, and they need the same amount of electrons, they're going to form a covalent bond, where they both SHARE three (if one gave three to the other, it would be down to two and even MORE unbalanced)</span>
Answer:
C. Trp D. Phe E. Tyr
Explanation:
The concentration of a protein has a direct relation with absorbance of the protein in a UV spectrophotometer. The formula which relates concentration with absorbance is described as under:
A = ∈ x c x l
where, A = Absorbance
∈ = Molar extinction co-efficient
c = Concentration of absorbing species i.e. protein
l = Path length of light
Tryptophan (Trp), phenylalanine (Phe ) and tyrosine (Tyr) are three aromatic amino acids which are used to measure protein concentration by UV. It is mainly because of tryptophan (Trp), protein absorbs at 280 nm which gives us an idea of protein concentration during UV spectroscopy.
The table depicting the wavelength at which these amino acids absorb and their respective molar extinction coefficient is as under:
Amino acid Wavelength Molar extinction co-efficient (∈)
Tryptophan 282 nm 5690
Tyrosine 274 nm 1280
Phenylalanine 257 nm 570
In view of table above, we can easily see that Molar extinction co-efficient (∈) of Tryptophan is highest amongst all these 3 amino acids that is why it dominates while measuring concentration.
Answer:
See figure 1
Explanation:
On this case we have a <u>base</u> (methylamine) and an <u>acid</u> (2-methyl propanoic acid). When we have an acid and a base an <u>acid-base reaction </u>will take place, on this specific case we will produce an <u>ammonium carboxylate salt.</u>
Now the question is: <u>¿These compounds can react by a nucleophile acyl substitution reaction?</u> in other words <u>¿These compounds can produce an amide? </u>
Due to the nature of the compounds (base and acid), <u>the nucleophile</u> (methylamine) <u>doesn't have the ability to attack the carbon</u> of the carbonyl group due to his basicity. The methylamine will react with the acid-<u>producing a positive charge</u> on the nitrogen and with this charge, the methylamine <u>loses all his nucleophilicity.</u>
I hope it helps!