Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:

We can write the law of mass action for it:
![Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BCH_3CO_2%5E-%5D%7D%7B%5BCH_3CO_2H%5D%7D)
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change
due to the dissociation extent, we are able to rewrite it as shown below:

Thus, via the quadratic equation or solve, we obtain the following solutions:

Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
Well, a compound has a total charge of 0. So, it's electrically neutral. Since the X is 3+ and the Y is 3- they add to 0. Meaning no subscripts are necessary. Why don't you try a different combo?
Like:
A^3 and B^1-, to get a 3- charge you need 3xB^1- so the formula is AB3
Does this help?
Single bonds are those that bond with one atom, and sigma bonds are the strongest type of covalent bonds that are single bonded.
That means NO, not all single bonds are sigma bond, but all sigma bonds are single bonds.
Aluminum has three oxidation states. The most common one is +3. The other two are +1 and +2. One +3 oxidation state for Aluminum can be found in the compound aluminum oxide, Al2O3.