Jerome solves a problem using the law of conservation of momentum. What should Jerome always keep constant for each object after the objects collide and bounce apart?
a-velocity
b-mass
c-momentum
d-direction
Answer:
b. Mass
Explanation:
This question has to do with the principle of the law of conservation of momentum which states that the momentum of a system remains constant if no external force is acting on it.
As the question states, two objects collide with each other and eventually bounce apart, so their momentum may not be conserved but the mass of the objects is constant for each non-relativistic motion. Because of this, the mass of each object prior to the collision would be the same as the mass after the collision.
Therefore, the correct answer is B. Mass.
Basically the cheetah is running 31.5km/h faster than the gazelle. So to determone how long it will take to cover 9mm at that speed, you have to a lot of work. If you skip all of that work, the answer is 1.60m seconds
The gas would also decrease in size since the container lost gas to decrease the size of the container.
Answer:
The answer to your question is: letter D.
Explanation:
a.The mass that a mole of substance has, measured in grams per mole. Density is not measure in moles, so this is not the correct answer.
b.The amount of substance dissolved in a liquid, measured in moles per liter. The substance dissolved in a liquid must be measure in grams not in moles, so this answer is incorrect.
c.The mass of substance dissolved in a liquid, measured in grams per milliliter. I think that this definition is correct but is incomple, so this answer is wrong.
d.The ratio of a substance's mass to its volume, measured in grams per milliliter and also equivalent to grams per cubic centimeter. This is the right description to density, so this is the correct answer.
Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v = 
let's calculate
v = 
v = 
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C