Answer:
the velocity is 25 m/s
Explanation:
The computation of the velocity is shown below:
As we know that
Magnitude of Momentum = (mass) × (speed)
75 kg. m/s = 3 kg × speed
So, the speed is
= 75 ÷ 3
= 25 m/s
hence, the velocity is 25 m/s
The time taken by Carbon-14 to decay radioactively from 120g to 112.5g is 22,920 years.
<h3>How do we calculate the total time of decay?</h3>
Time required for the whole radioactive decay of any substance will be calculated by using the below link:
T = (n)(t), where
- t = half life time = 5730 years
- n = number of half life required for the decay
Initial mass of Carbon-14 = 120g
Final mass of Carbon-14 = 112.5g
Left mass = 120 - 112 = 7.5g
Number of required half life for this will be:
- 1: 120 → 60
- 2: 60 → 30
- 3: 30 → 15
- 4: 15 → 7.5
4 half lives are required, now on putting values we get
T = (4)(5730) = 22,920 years
Hence required time for the decay is 22,920 years.
To know more about radioactive decay, visit the below link:
brainly.com/question/24115447
#SPJ1
The arrangement of the elements in order of decreasing metallic character is: Rb, Zn, P, S, F, Ca, Co, Cr
<h3 /><h3>What are metals?</h3>
Metals are elements which are known by their special ability to form ions by a loss of electrons.
The increasing metallic character of metal is a measure of their ability to lose electrons.
Metallic character increases from right to left and down a group in the period table.
Metals are found to the left of the period table.
In conclusion, metals are known by their ability to lose electrons.
Learn more about metals at: brainly.com/question/25597694
#SPJ1
Answer:
Explanation:
A solubility curve is a graph of solubility, measured in g/100 g water, against temperature in °C. Solubility curves for more than one substance are often drawn on the same graph, allowing comparisons between substances
<u>Answer:</u> The entropy change of the ethyl acetate is 133. J/K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethyl acetate = 398 g
Molar mass of ethyl acetate = 88.11 g/mol
Putting values in above equation, we get:

To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change = ?
n = moles of ethyl acetate = 4.52 moles
= enthalpy of fusion = 10.5 kJ/mol = 10500 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![84.0^oC=[84+273]K=357K](https://tex.z-dn.net/?f=84.0%5EoC%3D%5B84%2B273%5DK%3D357K)
Putting values in above equation, we get:

Hence, the entropy change of the ethyl acetate is 133. J/K