1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vedmedyk [2.9K]
3 years ago
13

Solve each equation. Check your solution. 3x 32 = 7x + 28

Mathematics
1 answer:
skad [1K]3 years ago
6 0

Answer:

x= 28 /89

Step-by-step explanation:

3x(32)=7x+28

Step 1: Simplify both sides of the equation.

96x=7x+28

Step 2: Subtract 7 from both sides.

96x   7x+28

−7             −7

89x=28

Step 3: Divide both sides by 89.

89x /89 = 28 /89

You might be interested in
9x−4y=−7 7x−12y=39 ​
Nina [5.8K]

what is  the question?

8 0
3 years ago
write two different fraction names for the dot on the number line. you may use halves, thirds,fourths,fifths,sixth eighths,or te
tino4ka555 [31]
4 the first one it would be 1/5 or 2/10 and the second one would be 4/5 or 12/15 Ana the third one would be 3/or 1/2
3 0
3 years ago
Need help finding the slope
devlian [24]
The answer is -2/8 if u do y2-y1 and x2-x1 you got -2/8
8 0
2 years ago
Help please i need it fast
brilliants [131]

Answer:

(0,0) (3,2) and (-2,-2) (4,2)

Step-by-step explanation:

To find the slope, you do \frac{y_{1}-y_{2} }{x_{1}-x_{2}}, which would work for both.

2-0/3-0=2/3

2-(-2)/4-(-2)=2+2/4+6=2/3

5 0
3 years ago
The spread of a virus is modeled by V (t) = −t 3 + t 2 + 12t,
VashaNatasha [74]

Functions can be used to model real life scenarios

  • The reasonable domain is \mathbf{[0,\infty)}.
  • The average rate of change from t = 0 to 2 is 20 persons per week
  • The instantaneous rate of change is \mathbf{V'(t) = -3t^2 + 2t + 12}.
  • The slope of the tangent line at point (2,V(20) is 10
  • The rate of infection at the maximum point is 8.79 people per week

The function is given as:

\mathbf{V(t) = -t^3 + t^2 + 12t}

<u>(a) Sketch V(t)</u>

See attachment for the graph of \mathbf{V(t) = -t^3 + t^2 + 12t}

<u />

<u>(b) The reasonable domain</u>

t represents the number of weeks.

This means that: <em>t cannot be negative.</em>

So, the reasonable domain is: \mathbf{[0,\infty)}

<u />

<u>(c) Average rate of change from t = 0 to 2</u>

This is calculated as:

\mathbf{m = \frac{V(a) - V(b)}{a - b}}

So, we have:

\mathbf{m = \frac{V(2) - V(0)}{2 - 0}}

\mathbf{m = \frac{V(2) - V(0)}{2}}

Calculate <em>V(2) and V(0)</em>

\mathbf{V(2) = (-2)^3 + (2)^2 + 12 \times 2 = 20}

\mathbf{V(0) = (0)^3 + (0)^2 + 12 \times 0 = 0}

So, we have:

\mathbf{m = \frac{20 - 0}{2}}

\mathbf{m = \frac{20}{2}}

\mathbf{m = 10}

Hence, the average rate of change from t = 0 to 2 is 20

<u>(d) The instantaneous rate of change using limits</u>

\mathbf{V(t) = -t^3 + t^2 + 12t}

The instantaneous rate of change is calculated as:

\mathbf{V'(t) = \lim_{h \to \infty} \frac{V(t + h) - V(t)}{h}}

So, we have:

\mathbf{V(t + h) = (-(t + h))^3 + (t + h)^2 + 12(t + h)}

\mathbf{V(t + h) = (-t - h)^3 + (t + h)^2 + 12(t + h)}

Expand

\mathbf{V(t + h) = (-t)^3 +3(-t)^2(-h) +3(-t)(-h)^2 + (-h)^3 + t^2 + 2th+ h^2 + 12t + 12h}\mathbf{V(t + h) = -t^3 -3t^2h -3th^2 - h^3 + t^2 + 2th+ h^2 + 12t + 12h}

Subtract V(t) from both sides

\mathbf{V(t + h) - V(t)= -t^3 -3t^2h -3th^2 - h^3 + t^2 + 2th+ h^2 + 12t + 12h - V(t)}

Substitute \mathbf{V(t) = -t^3 + t^2 + 12t}

\mathbf{V(t + h) - V(t)= -t^3 -3t^2h -3th^2 - h^3 + t^2 + 2th+ h^2 + 12t + 12h +t^3 - t^2 - 12t}

Cancel out common terms

\mathbf{V(t + h) - V(t)= -3t^2h -3th^2 - h^3  + 2th+ h^2  + 12h}

\mathbf{V'(t) = \lim_{h \to \infty} \frac{V(t + h) - V(t)}{h}} becomes

\mathbf{V'(t) = \lim_{h \to \infty} \frac{ -3t^2h -3th^2 - h^3  + 2th+ h^2  + 12h}{h}}

\mathbf{V'(t) = \lim_{h \to \infty} -3t^2 -3th - h^2  + 2t+ h  + 12}

Limit h to 0

\mathbf{V'(t) = -3t^2 -3t\times 0 - 0^2  + 2t+ 0  + 12}

\mathbf{V'(t) = -3t^2 + 2t + 12}

<u>(e) V(2) and V'(2)</u>

Substitute 2 for t in V(t) and V'(t)

So, we have:

\mathbf{V(2) = (-2)^3 + (2)^2 + 12 \times 2 = 20}

\mathbf{V'(2) = -3 \times 2^2 + 2 \times 2 + 12 = 4}

<em>Interpretation</em>

V(2) means that, 20 people were infected after 2 weeks of the virus spread

V'(2) means that, the rate of infection of the virus after 2 weeks is 4 people per week

<u>(f) Sketch the tangent line at (2,V(2))</u>

See attachment for the tangent line

The slope of this line is:

\mathbf{m = \frac{V(2)}{2}}

\mathbf{m = \frac{20}{2}}

\mathbf{m = 10}

The slope of the tangent line is 10

<u>(g) Estimate V(2.1)</u>

The <em>value of 2.1 </em>is

\mathbf{V(2.1) = (-2.1)^3 + (2.1)^2 + 12 \times 2.1}

\mathbf{V(2.1) = 20.35}

<u />

<u>(h) The maximum number of people infected at the same time</u>

Using the graph, the maximum point on the graph is:

\mathbf{(t,V(t) = (2.361,20.745)}

This means that:

The maximum number of people infected at the same time is approximately 21.

The rate of infection at this point is:

\mathbf{m = \frac{V(t)}{t}}

\mathbf{m = \frac{20.745}{2.361}}

\mathbf{m = 8.79}

The rate of infection is <em>8.79 people per week</em>

Read more about graphs and functions at:

brainly.com/question/18806107

6 0
3 years ago
Other questions:
  • In what order should you perform the operations in the expression 4×3−12÷2+5?
    15·2 answers
  • justin bought 40 packs of baseball cards for a discounted price of $64. if he sells 10 pack of baseball cards to a friend at cos
    6·2 answers
  • Convert 77 millimeters to inches.
    11·1 answer
  • U-haul rents a truck for $49.95 + $.75 per mile. ABC Truck Rental rents the same truck for $59.95 and $.50 per mile. The equatio
    8·1 answer
  • The options are greater than less than, at most and at least
    7·2 answers
  • Louis and Max are contestants in a jellybean-eating contest. Louis eats 18 jellybeans
    12·1 answer
  • I need help on math whats 10x3x12x21
    9·2 answers
  • Which set of values show skip counting by 4?
    6·2 answers
  • Help pleaseeeeeeeeeeeeeeee
    11·2 answers
  • The kindergarten class at Stokes Elementary drinks about 210 pints of milk per week. About how many gallons of milk does the cla
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!