Answer:
(a) 1s² 2s² 2p⁶ 3s² 3p⁴
(b) 1s² 2s² 2p⁶ 3s² 3p⁵
(c) sp³
(d) No valence orbital remains unhybridized.
Explanation:
<em>Consider the SCl₂ molecule. </em>
<em>(a) What is the electron configuration of an isolated S atom? </em>
S has 16 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁴.
<em>(b) What is the electron configuration of an isolated Cl atom? </em>
Cl has 17 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁵.
<em>(c) What hybrid orbitals should be constructed on the S atom to make the S-Cl bonds in SCl₂? </em>
SCl₂ has a tetrahedral electronic geometry. Therefore, the orbital 3s hybridizes with the 3 orbitals 3 p to form 4 hybrid orbital sp³.
<em>(d) What valence orbitals, if any, remain unhybridized on the S atom in SCl₂?</em>
No valence orbital remains unhybridized.
There are 2 possible answers here : b and d.
The Ideal Gas Equation is : <u>PV = nRT</u>
<u />
Here, when pressure is increased and temperature is lowered, the volume of the molecules will substantially decrease, which means it has deviated from ideal behavior.
Answer:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
Explanation:
Chemical equation:
CO + O₂ → CO₂
Balanced chemical equation:
2CO + O₂ → 2CO₂
The standard enthalpy for the formation of CO = -110.5 kj/mol
The standard enthalpy for the formation of O₂ = 0 kj/mol
The standard enthalpy for the formation of CO₂ = -393.5 kj/mol
Now we will put the values in equation:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol + 0]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol]
ΔH0reaction = -283 kj/mol
Answer:
2.39 atm
Explanation:
- Use Gay-Lussac's law
- P2 = P1T2/T1
- Fill in with our values
- Hope this helped! Please let me know if you need further explanation.