The given question is incomplete. The complete question is:
Photosynthesis reactions in green plants use carbon dioxide and water to produce glucose (C6H12O6) and oxygen. A plant has 88.0 g of carbon dioxide and 64.0 g of water available for photosynthesis. Determine the mass of glucose (C6H1206) produced
Answer: 60.0 g of glucose
Explanation:
To calculate the moles, we use the equation:
a) moles of
b) moles of
According to stoichiometry :
6 moles of
require = 6 moles of
Thus 2.0 moles of
require=
of
Thus
is the limiting reagent as it limits the formation of product.
As 6 moles of
give = 1 moles of glucose
Thus 2.0 moles of
give =
of glucose
Mass of glucose =
Thus 60.0 g of glucose will be produced from 88.0 g of carbon dioxide and 64.0 g of water
Answer:
All atoms heavier than barium
Explanation:
In the periodic table, elements are divided into blocks. We have the;
s- block elements
p- block elements
d- block elements
f- block elements
However, immediately after Barium, we now encounter elements that have f-orbitals. Barium possesses a fully filled d-orbital. Hence after it, we see elements with 4f and 5f orbitals called the Lanthanides and actinides. The elements following the lanthanide and actinide series possess completely filled f-orbitals as inner orbitals.
Hence elements heavier than barium all possess f-orbitals.
Answer:
we need the model to answer
Explanation:
These events are actually sorted right, according to the time they occurred.
1. Democritus proposes the existence of atoms - this happened in the 5th century BC
2. Dalton's atomic theory - it was first presented in 1803
3. J.J. Thomson discovers the electron - happened in 1897
4. Rutherford's gold foil experiment - somewhere between 1908 and 1913
5. Bohr model - it was introduced in 1913
6. Schrodinger's wave - the equation was published in 1925