The distance between slit and the screen is 1.214m.
To find the answer, we have to know about the width of the central maximum.
<h3>How to find the distance between slit and the screen?</h3>
- It is given that, wavelength 560 nm passes through a slit of width 0. 170 mm, and the width of the central maximum on a screen is 8. 00 mm.
- We have the expression for slit width w as,

where, d is the distance between slit and the screen, and a is the slit width.
- Thus, distance between slit and the screen is,

Thus, we can conclude that, the distance between slit and the screen is 1.214m.
Learn more about the width of the central maximum here:
brainly.com/question/13088191
#SPJ4
Answer:
M₀ = 5i - 4j - k
Explanation:
Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e
M₀ = r x F
From the question,
r = i + j + k
F = 1i + 0j + 5k
Therefore,
M₀ = (i + j + k) x (1i + 0j + 5k)
M₀ = ![\left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C1%261%261%5C%5C1%260%265%5Cend%7Barray%7D%5Cright%5D)
M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)
M₀ = i(5) - j(4) + k(-1)
M₀ = 5i - 4j - k
Therefore, the moment about the origin O of the force F is
M₀ = 5i - 4j - k
Answer:
I do not think that it is the most reliable way to gain information since it is very hard to do and can be easily messed up. No, I don't think you can charge someone on only evidence from blood spatter, but if there was additional evidence I think that this would definitely help with the case but not on its own, since it doesn’t give you physical evidence about the suspect.
Explanation:
True
The sample of the experiment is randomized in randomization.
A convergent meniscus lens is a lens that is composed of two spherical surfaces, like the on shown next:
The imaginary line that runs through the middle of the lens is the "symmetry axis".
In this type of lenses incident parallel beams of light converge in one point, as follows:
And thus we get the diagram.