Answer:
P₁ = 219.3 Pa
Explanation:
This fluid mechanics problem, we can use that the pressure is distributed with the same value throughout the system, which is Pascal's principle.
Let's use the subinidce1 for the small diameter and the subscript 2 for the larger diameter.
P₁ = P₂
pressure is defined by
P = F / A
we subtitute
F₁ / A₁ = F₂ / A₂
F₁ = F₂ A₁ / A₂
the area in a circle is
A = π r² = π d² / 4
we substitute
F₁ = F₂ (d₁ / d₂)²
we calculate
F₁ = 17640 (2/32)²
F₁ = 68.9 N
Having the force to be applied we can find the air pressure on the small plunger
P₁ = F₁ / A₁
P₁ = F₁ 4 / π d₁²
let's calculate
P₁ = 68.9 4 / (π 0.02²)
P₁ = 219.3 Pa
Answer:
The change in internal energy of the system = -772kJ
Explanation:
Given :
Heat lost by the system , a = -266KJ
Workdone by the system, W = -506KJ
The first law of thermodynamics states that:
Change in internal energy = q + w
Substituting values into the equation
Change in internal energy = (-266KJ) + (-506KJ)
Change in internal energy = -722KJ
The answer would be Power
Answer:
500÷25=20
so 20 coulombs per second
please mark me as brainlist
Answer:
3469.788 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
First rocket

Second rocket

When this will collide the total distance they would have covered would be 6000 m.


Hence at 13.72 seconds they will collide assuming they are launched at the same time.

The second rocket would have gone 3469.788 m when they collide