Answer:
Explanation:
Electrical energy is energy derived from electric potential energy or kinetic energy.
Or,
Electrical energy is a form of energy resulting from the flow of electric charge. Lightning, batteries and even electric eels are examples of electrical energy.People use electricity for lighting, heating, cooling, and refrigeration and for operating appliances, computers, electronics, machinery, and public transportation systems.
Hope it helped you.
Answer:
The mantle exists above the crust of the earth
Using your periodic table if you look at it 3-11 are tansition metals so the horizontal Group Number will help if the group number has to digits just remove the one so if it were to be 13, the valence would be 3, if it were 14 the valence would be ,4 if it were 15, the valence would be 5, if it were 16 the valence would be 6, if it were 17 the valence would be 7 if it were group 18 the valence would be 8 so if anymore help needed to explain hit me up
Answer: a) The rate constant, k, for this reaction is
b) No
does not depend on concentration.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

Given: Order with respect to
= 1
Thus rate law is:
a) ![Rate=k[A]^1](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1)
k= rate constant
![0.00250=k[0.484]^1](https://tex.z-dn.net/?f=0.00250%3Dk%5B0.484%5D%5E1)

The rate constant, k, for this reaction is
b) Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
Half life is the amount of time taken by a radioactive material to decay to half of its original value.


Thus
does not depend on concentration.
We are given with two measurements of the arm and an input weight. To answer this problem,we need to balance the forces and use the lengths of the arms.
209 N * 8 m = x * 1.5 m
x = 1114.67 N
it takes 1114.67 N to lift the input weight