Answer:
120
Step-by-step explanation:
Answer:
1.)B
2.)C
I apologize if this answer is wrong.
Answer:
I solved part a
To solve this question, we need to solve an exponential equation, which we do applying the natural logarithm to both sides of the equation, getting that it will take 7.6 years for for 21 of the trees to become infected.
PART C
The logarithmic model is: g(x)= in x/0.4
We are given an exponential function, for the amount of infected trees f(x) after x years.To find the amount years needed for the number of infected trees to reach x, we find the inverse function, applying the natural logarithm.
Step-by-step explanation:
mark me brainliest!!
Question number one is 2/3
So... the radiator has 15 liters of 70% antifreeze.. but needs an 80% antifreeze
well, so, you need to drain some and put some with higher percentage, seems to be, you will end up at the same 15 liters, possible the radiator's capacity, of 80% antifreeze
so, the same amount going out, of 70% is the same amount going in, of 100% antifreeze
now.. let's use the decimal format for the percents, or 70% is 70/100 or 0.7 and so on

so.. let's subtract, from the current solution, 0.7x and add 1x or x, our antifreeze concentration amount, should be 12 though
10.5 - 0.7x + x = 12
solve for "x"