As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:






Answer:
No.
Explanation:
A feather is less dense and thus less force exerted while a rock is very dense thus exerting more force .
For fundamental frequency of a string to occur, the length of the string has to be half the wavelength. That is,
1/2y = L, where L = length of the string, y = wavelength.
Therefore,
y = 2L = 2*0.75 =1.5 m
Additionally,
y = v/f Where v = wave speed, and f = ferquncy
Then,
v = y*f = 1.5*220 = 330 m/s
In kynematics you describe the motion of particles using vectors and their change in time. You define a position vector r for a particle, and then define velocity v and acceleration a as


In dynamics Newton's laws predict the acceleration for a given force. Knowing the acceleration, and the kynematical relations defines above, you can solve for the position as a function of time: r(t)