1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiks02 [169]
3 years ago
14

In a spy movie, the hero, James, stands on a scale that is positioned horizontally on the floor. It registers his weight as 810

N . Unknown to our hero, the floor is actually a trap door, and when the door suddenly disappears, James and the scale fall at the acceleration of gravity, down towards an unknown fate. As James falls, he looks at the scale to see his weight. What does he see
Physics
1 answer:
kap26 [50]3 years ago
6 0

Answer:

His weight would be zero on the scale i.e he is weightless at that instance.

Explanation:

weight = mg

where m is the mass of the object, and g is the acceleration of gravity.

⇒ 810 = mg

During free fall, the weight of an object can be determined by:

W = mg - ma (provided that acceleration of gravity is greater than acceleration of the object)

where a is the acceleration of the object.

But since James fall at the acceleration of gravity, then:

g = a

mg = ma = 810 N

So that;

W = 810 - 810

    = 0 N

Therefore though the weight of James is 810 N, but the scale reads 0 N. this condition is referred to as weightlessness.

You might be interested in
How would the terminal velocity of a piece of tissue paper compare to the terminal velocity of a rock?
matrenka [14]

Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.  

Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.

Case 1: Terminal velocity of a piece of tissue paper.

The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.

Downward gravitational force, F = mg

Upward air resistance or friction or drag force will be f_{1}

So, paper will attain terminal velocity when mg =  f_{1}

Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.

Downward force on rock, F = Mg

Drag force = f_{2}

Rock will attain terminal velocity when Mg = f_{2}

Mg > mg

so, f_{2} > f_{1}

And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.  

5 0
3 years ago
____________ are manufactured by the brain to help relieve pain. Ventricles Epinephrines Endorphins Phalanges
VMariaS [17]

It's Endorphins. That's a pain killer produced by the brain.

5 0
3 years ago
Read 2 more answers
Light passes through a pair of narrow slits with a 0.67-mm separation. It is found that the fourth bright fringe makes an angle
babunello [35]

Answer:

The wavelength of the light is 555 nm.

Explanation:

according to Bragg's law..

n×λ = d×sin(θ)

n is the fringe number

λ is the wavelength of the light

d is the slit separation

θ is the angle the light makes with the normal at the fringe.

7 0
4 years ago
LINK OR PDF = REPORT
seraphim [82]

C

Explanation:

that's just what I learned in school

3 0
3 years ago
Read 2 more answers
Two particles with oppositely signed charges are held a fixed distance apart. The charges are equal in magnitude and they exert
damaskus [11]

Answer:

the force will decrease to 3/4 of its original value.

Explanation:

The initial electric force between the two charges is:

F = k \frac{q\cdot q}{r^2}

where

k is the Coulomb's constant

q is the magnitude of each charge

r is their separation

Later, half of one charge is transferred to the other charge; this means that one charge will have a charge of

q+\frac{q}{2}=\frac{3}{2}q

while the other charge will be

q-\frac{q}{2}=\frac{q}{2}

So, the new force will be

F' = k \frac{(\frac{q}{2})\cdot (\frac{3}{2}q)}{r^2}=\frac{3}{4} (k\frac{q\cdot q}{r^2})=\frac{3}{4}F

So, the force will decrease to 3/4 of its original value.

6 0
3 years ago
Other questions:
  • A place or object used for comparison to determine if something is moving
    7·1 answer
  • Plz help me asap !!!!!!!!!!
    10·1 answer
  • A small amber bead with a mass of 12.6 g and a charge of −0.646 µC is suspended in equilibrium above the center of a large, hori
    10·1 answer
  • How does this happen?
    12·1 answer
  • There is a known potential difference between two charged plates of 12000 Volts. An object with a charge of 6.5 x 10-6 C charge
    8·1 answer
  • When the plutonium bomb was tested in New Mexico in 1945, approximately 1 gram of matter was converted into energy. Suppose anot
    12·1 answer
  • Particle A of charge 2.76 10-4 C is at the origin, particle B of charge -6.54 10-4 C is at (4.00 m, 0), and particle C of charge
    8·1 answer
  • The air in living room has a mass of 72 kg and a specific heat of 1010 J/(kg°C). What is the approximate change in thermal energ
    7·1 answer
  • Identify how any organisms from the video showed variation, competition or overproduction. (Make sure to incude the name of the
    5·1 answer
  • Which statement describes how nuclear power generation systems work?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!