Answer:
10 °C
Explanation:
Applying
q = cm(t₂-t₁)............... Equation 2
Where q = heat energy, c = specific heat of ethanol, m = mass of ethanol, t₁ = initial temperature, t₂ = Final temperature.
Given: c = 2.44 J/g.°C, m = 300 g, q = 14640 J, t₂ = 30°C
Substitute into equation 2 and solve for t₁
14640 = 2.44×300(30-t₁)
14640 = 732(30-t₁)
732(30-t₁) = 14640
(30-t₁) = 14640/732
(30-t₁) = 20
t₁ = 30-20
t₁ = 10 °C
Answer:
a)
, b) 
Explanation:
a) The maximum height is obtained with the help of the First and Second Derivative Tests:
First Derivative



Second Derivative
(absolute maximum)
The maximum height reached by the ball is:


b) The time required by the ball to hit the ground is:




Just one root offers a solution that is physically reasonable:

The velocity of the ball when it hits the ground is:


Answer:
(A) Original velocity will be 7.244 m /sec
(B) Acceleration will be 
Explanation:
We have given distance covers by truck s = 40 m
Time taken by truck to cover this distance t = 7.45 sec
Final velocity v = 3.50 sec
According to second equation of motion


-----eqn 1
According to first equation of motion
v = u + at
So
-----eqn2
Solving equation 1 and 2
a = 
And u = 7.244 m /sec
(A) Original velocity will be 7.244 m /sec
(B) Acceleration will be

The Resistance needs to be the same to allow the current to double with the voltage.
Answer:
60 km/h
Explanation:
In the first part of the trip, the speed is
v = 80 km/h
while the time interval is
t = 3 h
So, the distance covered is:
d = vt = (80)(3)= 240 km
The problem states that this distance is half distance between home and the destination - so, the total distance between home and the destination is

The time taken to cover the second part of the trip is 5 h, so the total time taken is
T = 3 h + 5 h = 8 h
Therefore, the average velocity for the entire trip is
