Answer:
Part a)
When spring compressed by 2 cm
H = 1.47 m
Part b)
When spring is compressed by 4 cm
H = 5.94 m
Explanation:
Part a)
As we know that the spring is compressed and released
so here spring potential energy is converted into gravitational potential energy at its maximum height
So we will have


so we have

Part b)
Similarly when spring is compressed by 4 cm
then we have


so we have

Answer:
option (d) 7.1 kN
Explanation:
Given:
Mass of the car, m = 1600 kg
Acceleration of the car, a = 1.5 m/s²
Coefficient of kinetic friction = 0.3
let the tension be 'T'
Now,
ma = T - f .................(1)
where f is the frictional force
also,
f = 0.3 × mg
where g is the acceleration due to the gravity
thus,
f = 0.3 × 1600 × 9.81 =
therefore,
equation 1 becomes
1600 × 1.5 = T - 4708.8
or
T = 2400 + 4708.8
or
T = 7108.8 N
or
T = 7.108 kN
Hence,
The correct answer is option (d) 7.1 kN
C) fault block, the mountain is forming on a FAULT line.
Answer:

Explanation:
Due to uniform electric field net flux through a closed surface is always zero
so here we have to find the net flux through a sphere due to a point charge placed at origin and due to a uniform electric field
so here we will have

now we have


Due to external uniform field the electric flux is zero
so the total flux is only due to charge and it is equal to

Answer:
<h2>11.6 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
mass is in kg
1000 g = 1 kg
145 g = 0.145 kg
From the question we have
force = 0.145 × 80
We have the final answer as
<h3>11.6 N</h3>
Hope this helps you