What are you asking???? If the formula had no atoms of oxygen then......
Answer:
a) distance is 4+7+1+8=20 blocks
b) displacement is 10 blocks
Explanation:
find displacement: x and y
x axis displacement = 4-1 = 3 blocks
y axis displacement = -7+8= 1 block
displacement = the square root of 3^2 + 1^2
= 9+1 = 10 blocks.
You can find the angle of displacement with respect to the initial position using trig identities, if you wish.
It is very important<span> to know the shape of a molecule if one is to understand its reactions. It is also desirable to have a simple method to predict the geometries of compounds. For main group compounds, the </span>VSEPR<span> method is such a predictive tool and unsurpassed as a handy predictive method.</span>
The reaction is
CaC₂(s) + 2H₂O (l) -----> Ca(OH)₂ (s) + C₂H₂ (g)
As we have data of gas ethyne (or acetylene), C₂H₂
We can calculate the moles of acetylene and from this we can estimate the mass of calcium carbide taken
the moles of acetylene will be calculated using ideal gas equation
PV =nRT
R = gas constant = 0.0821 Latm/molK
T = 385 K
V = volume = 550 L
P = Pressure = 1.25 atm
n = moles = ?
n = PV /RT = 1.25 X 550 / 0.0821 X 385 = 21.75 mol
As per balanced equation these moles of acetylene will be obtained from same moles of calcium carbide
moles of calcium carbide = 21.75mol
molar mass of CaC₂ = 40 + 24 = 64
mass of CaC₂ = moles X molar mass = 21.75 X 64 = 1392g
Answer:

Explanation:
We already know that the mass number of an atom is the sum of the number of protons and the number of neutrons.
So, the mass number of this isotope is;
Number of protons = 7
Number of neutrons = 8
Mass number = 7 + 8 = 15
Hence, the isotope is;
