Answer:
The speed of the white puck immediately after the collision is 2.6 m/s.
Explanation:
Given that,
Two pucks are equal masses.
Speed of black puck = 1.5 m/s
According to given figure,
We need to calculate the speed of the white puck immediately after the collision
Using law of conservation of momentum

Put the value into the formula according to figure




Hence, The speed of the white puck immediately after the collision is 2.6 m/s.
- initial velocity=15m/s=u
- Acceleration=a=5m/s^2
- Final velocity=v=30m/s
- Distance be s
Using 3rd equation of kinematics






Answer:
<em>171.5m</em>
Explanation:
The velocity of sound in water = 343m/s
Time taken = 1.00secs
using the formula to calculate the distance
2x = vt
x is the distance
v is the speed of sound
t is the time
x = vt/2
x = 343(1)/2
x = 171.5m
<em>hence their separation 1.00 s after the second object is released is 171.5m</em>
If you drop a <span>6.0x10^-2 kg ball from height of 1.0m above hard flat surface, and a</span>fter the ball had bounce off the flat surface, the kinetic energy of the ball would be mgh - 0.14 = 0.45.