Answer:
A)
B)
C)
Explanation:
Given that a pendulum is suspended by a shaft with a very light thin rod.
Followed by the given information: m = 100 g, I = 0.5 m, g = 9.8 m / s²
We can determine the answer to these questions using angular kinematics.
Angular kinematics is just derived from linear kinematics but in different symbols, and expressions.
Here are the formulas for angular kinematics:
- θ = ωt
- ∆w =
- L [Angular momentum] = mvr [mass × velocity × radius]
A) What is the minimum speed required for the pendulum to traverse the complete circle?
We can use the formula v = √gL derived from
B) The same question if the pendulum is suspended with a wire?
C) What is the ratio of the two calculated speeds?
Answer:
Industries outlook is uncertain
Explanation:
Competitive pressures stemming from the threat of entry are stronger when the industry's outlook is uncertain or highly risky, entry barriers are low, and very few existing industry members are looking to expand their market reach by entering product segments or geographic areas where they currently do not have a presence. entry barriers are low, the pool of entry candidates is large, and existing industry members are earning good profits. there are fewer than 10 entry candidates with the potential to hurdle the industry's barriers to entry. t is difficult or costly for a customer to switch to a new brand, the total dollar investment needed to enter the market successfully exceeds $5 million, and existing governmental regulations impose significant cost and compliance burdens on industry members. buyers have strong brand preferences and high degrees of loyalty to their preferred brand and when it takes new entrants less than 5 years to secure attractive amounts of space on retailers' shelves and build a well-recognized brand name.
Answer:
a) 
Now we can replace the velocity for t=1.75 s

For t = 3.0 s we have:

b) 
And we can find the positions for the two times required like this:
And now we can replace and we got:

Explanation:
The particle position is given by:

Part a
In order to find the velocity we need to take the first derivate for the position function like this:

Now we can replace the velocity for t=1.75 s

For t = 3.0 s we have:

Part b
For this case we can find the average velocity with the following formula:

And we can find the positions for the two times required like this:
And now we can replace and we got:

so from what i was looking at i think the answer is d because The shorter the wavelength, the higher measure of vitality it produces.So the request is D. Bright beams, Visible light, Infrared, and Microwaves.
Answer:
centripetal Force
Explanation:
<u>Given:</u>
Mass of the body 
Radius of the circle 
Time period 
The centripetal Force acting on the body is given by F

Hence the centripetal force acting on the body is calculated