The resistance would increase.
Inertia is the resistance of any physical object to any change in its state of motion. inertia exists due to the mass of the object
The magnitude of the second charge given that the first is –6×10¯⁶ C and is located 0.05 m away is +3.0×10¯⁶ C
<h3>Coulomb's law equation </h3>
F = Kq₁q₂ / r²
Where
- F is the force of attraction
- K is the electrical constant
- q₁ and q₂ are two point charges
- r is the distance apart
<h3>How to determine the second charge </h3>
- Charge 1 (q₁) = –6×10¯⁶ C
- Electric constant (K) = 9×10⁹ Nm²/C²
- Distance apart (r) = 0.05 m
- Force (F) = 65 N
F = Kq₁q₂ / r²
Cross multiply
Fr² = Kq₁q₂
Divide both side by Kq₁
q₂ = Fr² / Kq₁
q₂ = (65 × 0.05²) / (9×10⁹ × 6×10¯⁶)
q₂ = +3.0×10¯⁶ C (since the force is attractive)
Learn more about Coulomb's law:
brainly.com/question/506926
It is false. Because the amount of energy carried in the wave is inversely related to the length of the waves wavelength. To correct the statement it should be that the shorter the radiation's wavelength the stronger is the radiation's energy.