Illluminance is the measurement of photo-metric power. That means, illuminance is the rate of photo-metric flux that is received by a surface per area. It is usually expressed as a unit of W/m^2. Thus, from the choices, the answer we're looking for is illuminance.
In this order terrestral, rocky, Venus, Earth
The efficiency of the machine is defined as

Here
Work out is the work output and Work in is the work input
To find the Work in we have then


Replacing with our values


The work done by the applied force is
W = Fd
Here,
F = Force
d = Distnace
Rearranging to find F,


F = 129.77N
Therefore the force exerted on the machine after rounding off to two significant figures is 130N
<span>as i recall, gravity is relative to the square of the distance.
so if the distance is tripled, then the gravitational attraction would be reduced by 3^2 or 1/9.
so F1 = F0/9
if the satellite is 2R from the center, and is moved to 4R (doubled would be 3R, tripled is 4R) then the distance is twice, and gravity would be 2^2 or 1/4.
</span>
Answer:
The correct answer is;
The magnitude of the force is 35.12 N
Explanation:
To solve the question, we note that the friction is zero and the force causes motion of a stationary mass
One of the equations of motion is required such as
v² = u² + 2× a× s
Where
v = Final velocity = 5.93 m/s
u = Initial velocity = 0 m/s , object at rest
a = acceleration
s = distance moved = 32 meters
But v = Distance/Time = 32 m /5.4 s = 5.93 m/s
Therefore
5.93² = 2×a×32
or a = 35.12/ 64 = 0.55 m/s²
Therefore Force F = Mass m × Acceleration a
Where mass m = 64 kg
Therefore F = 64 kg×0.55 m/s² = 35.12 N