The answer is: 120V
Power is the rate at which energy is supplied/transformed in time:
we can write:
V ddp in Volts represents Energy/Charge i.e. energy carried by each coulomb;
I current in Amperes represents Charge/time or coulombs passing each seconds.
combining them we have:
Power = energy/time = V • 1
or
1200 = V ⋅ 10
V = 1200/10 = 120V
Answer:
Explanation:
The question is incomplete.
The equation of motion is given for a particle, where s is in meters and t is in seconds. Find the acceleration after 4.5 seconds.
s= sin2(pi)t
Acceleration = d²S/dt²
dS/dt = 2πcos2πt
d²S/dt² = -4π²sin2πt
A(t) = -4π²sin2πt
Next is to find acceleration after 4.5 seconds
A(4.5) = -4π²sin2π(4.5)
A(4.5) = -4π²sin9π
A(4.5) = -4π²sin1620
A(4.5) = -4π²(0)
A(4.5) = 0m/s²
It’s mass is 100 kg, because if you divide both numbers, you get 100
Answer:
206.8965517 n
Explanation:
First, we need to see that 60:29 is 2.078965517:1. Then we need to multiply the energy put 29 cm from the fulcrum by 2.078965517, giving us the end result of our answer.
Answer:

Explanation:
For this exercise we must use the principle of conservation of energy
starting point. The proton very far from the nucleus
Em₀ = K = ½ m v²
final point. The point where the proton is stopped (v = 0)
Em_f = U = q V
where the potential is
V = k Ze / r²
Let us consider that all the charge of the nucleus is in the center, therefore r is the distance from this point to the proton that is approaching
Energy is conserved
Em₀ = Em_f
½ m v² = e (
)
with this expression we can find the closest approach distance (r)