Answer:
sin=cos
tan=sin/cos
cos=sin
Explanation:
I've just answer what ive known
I hope its hepls to you
Answer:
C) 20 m/s
Explanation:
Wave: A wave is a disturbance that travels through a medium and transfers energy from one point to another, without causing any permanent displacement of the medium itself. Examples of wave are, water wave, sound wave, light rays, radio waves. etc.
The velocity of a moving wave is
v = λf ............................ Equation 1
Where v = speed of the wave, λ = wave length, f = frequency of the wave.
Given: f = 2 Hz (two complete cycles in one seconds), λ = 10 meters
Substituting these values into equation 1
v = 2×10
v = 20 m/s.
Thus the speed of the wave = 20 m/s
The right option is C) 20 m/s
Explanation:
If the size and direction of the forces on the object are exactly balanced , then there is no net force acting on the object
Answer:
It will require 14.715 N of force to hold the cartoon beneath the water.
Explanation:
Given the the volume of cartoon is 1.5 liters.
We need to find the force required to hold this cartoon beneath the water.
As we know from the Archimedes principle that the net force is equal to the volume of liquid displaced.
Given volume of the cartoon is 1.5 liters. So, 1.5 liters of water will be displaced.
And we know the density of the water is
. That is 
And 

So, it will require 14.715 N of force to hold 1.5 liter volume of cartoon beneath the water.
Answer:
The time taken for the paint ball to hit the ground is 
The distance of the landing point from the tower is
Explanation:
From the question we are told that
The height of the tower is 
The speed of the paintball in the horizontal direction is 
Generally from kinematic equation we have that

Here u is the initial velocity of the paintball in the vertical direction and the value is 0 m/s , this because the ball was fired horizontally
a is equivalent to 
t is the time taken for the paintball to hit the ground
So

=> 
Generally the distance of its landing position from the tower is

=> 
=>