<span>You may already know that when you breathe in, your body takes in oxygen from the air. When you breathe out, your lungs expel carbon dioxide back into the air. But the breath you breathe out contains more than just carbon dioxide.</span>
When you exhale (breathe out), your breath also containsmoisture. Because your mouth and lungs are moist, each breath you exhale contains a little bit of water in the form of water vapor(the gas form of water).
For water to stay a gas in the form of water vapor, it needs enough energy to keep its molecules moving. Inside your lungs where it's nice and warm, this isn't a problem.
0.125 g=(0.125 g)(1000 mg/1g)=125 mg.
Then, we need 125 mg of ampicillin.
5 ml of liquid suspension contains 250 mg of ampicilling , therefore:
5 ml----------------250 mg of ampicilling
x--------------------125 mg of ampicilling
x=(5 ml * 125 mg of ampicilling) / 250 mg of ampicilling=2.5 ml
Answer: we require 2.5 ml
The statement is true in this situation is C. The size of Ffric is the same as the size of Fapp:
From the diagram, since the body is in equilibrium, the sum of vertical forces equals zero. Also, the sum of horizontal forces equal zero.
So, ∑Fx = 0 and ∑Fy = 0
Since Fapp acts in the negative x - direction and Ffric acts in the positive x - direction,
∑Fx = -Fapp + Ffric = 0
-Fapp + Ffric = 0
Fapp = Ffric
Also, since Fgrav acts in the negative y - direction and Fnorm acts in the positive y - direction,
∑Fy = Fnorm + (-Fgrav) = 0
Fnorm - Fgrav = 0
Fnorm = Fgrav
So, we see that the size of Fapp <u>equals</u> size of Ffric and the size of Fnorm <u>equals</u> the size of Fgrav.
So, the correct option is C
The statement which is true in this situation is C. The size of Ffric is the same as the size of Fapp.
Learn more about equilibrium of forces here:
brainly.com/question/12980489
Answer:
Carbonic anhydrase and they are located in renal tubules.
Explanation: