First figure out how many atoms you have with Avogadro's number. Since there are 63.5 grams/mol and you have 50.6 grams, you have (50.6/63.5)6.022E23=4.7986E23 atoms. Since there are 29 protons per atom, there are also 29 electrons per atom, so you should have a total of
29*4.7986E23=1.3916E25 electrons.
Since there is a positive charge you know some of these electrons are missing. How many are missing can be found by dividing the charge you have by the charge on the electron: 1.6E-6/1.6022E-19 = 9.98627E12 electrons are missing.
Now take the ratio of what is missing to what there should be:
9.98627E12/1.3916E25 = 7.1760873E-13
Answer:
Gravity is dependent on the mass of two bodies and the distance between them. There is a strong gravitational attraction between Earth and the Moon because they’re relatively close to one another. There is a strong gravitational attraction between Earth and the Sun because the Sun is so massive
Answer:
1885.2 ohms
Explanation:
Step one:
given data
L=5H
f=60Hz
Required
The inductive reactance of the inductor
Step two:
Applying the expression
XL= 2πfL
substitute
XL=2*3.142*60*5
XL=1885.2 ohms
Answer:
Explanation:
We shall consider all movement with respect to water assuming that river is at rest or motionless .
speed of canoe = 5 m /s
in five minutes , distance between hat and canoe = 5 x 60 x 5
1500 m
This distance will be covered by man in return journey . In this case his speed is 5 m /s again considering river constant .
So this will be covered at 5 m /s
time taken = 1500 / 5 = 300 s
= 5 minutes .
so it will take 5 minutes to row back to reclaim his hat .
Answer:
Total mechanical energy is the sum of potential energy plus kinetic energy. The kinetic energy will be 250 [J] and the potential energy is zero, therefore Total mechanical energy will be 250 + 0 =250[J]
Explanation:
This is a problem that applies the principle of energy conservation, i.e. mechanical energy that will be transformed into kinetic energy. We need to identify what kind of energy we have depending on the position of the ball with respect to the reference axis we take.
The reference axis or reference point is the point at which the potential energy is equal to zero, for this case we will take the ground as our reference point.
We know that the potential energy is defined by:
![E_{p}=m*g*h\\ where:\\m=mass[kg]\\g=gravity[m/s^2]\\h=elevation[m]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%20where%3A%5C%5Cm%3Dmass%5Bkg%5D%5C%5Cg%3Dgravity%5Bm%2Fs%5E2%5D%5C%5Ch%3Delevation%5Bm%5D)
We can clear the mass from this equation:
![m=\frac{E_{p} }{(g*h)} \\m=\frac{250 }{(9.81*5)} \\\\m=5.09[kg]](https://tex.z-dn.net/?f=m%3D%5Cfrac%7BE_%7Bp%7D%20%7D%7B%28g%2Ah%29%7D%20%5C%5Cm%3D%5Cfrac%7B250%20%7D%7B%289.81%2A5%29%7D%20%5C%5C%5C%5Cm%3D5.09%5Bkg%5D)
When this body falls its potential energy will decrease but its kinetic energy will increase and reach its maximum value when the ball reaches the ground.
In such a way that its potential energy would be transformed into kinetic energy.
![E_{k} = E_{p} \\E_{k} =kinetic energy [J]](https://tex.z-dn.net/?f=E_%7Bk%7D%20%3D%20E_%7Bp%7D%20%5C%5CE_%7Bk%7D%20%3Dkinetic%20energy%20%5BJ%5D)
Since the potential energy has been transformed all into kinetic energy the amount of energy is conserved, therefore the total mechanical energy will remain the same.