Answer:
Explanation:
Using the atomic mass of pluonium atoms (244 g/mol), you can calculate the number of atoms in 47.0 g. Then, knowing that each plutonium atom has 96 protons, you calculate the number of protons in the 47.0 g sample. Finally, using the positive charge of one proton, you calculate the total positive charge in the 47.0 g of plutonium.
<u>1. Number of atoms of plutonium in 47.0 g</u>
- Number of moles = mass / atomic mass = 47.0 g / 244 = 0.1926 moles
- Number of atoms = number of moles × 6.022 × 10²³ atoms/mol
- Number of atoms = 0.1926 mol × 6.022 × 10²³ atoms/mol = 1.15998×10²³ atoms
<u>2. Number of protons</u>
- Number of protons = 1.15998×10²³ atoms × 96 protons/atom = 1.11385×10²⁵ protons
<u>3. Charge</u>
<u />
- Charge = charge of one proton × number of protons
- Charge = 1.602×10⁻¹⁹ C/proton × 1.11385×10²⁵ protons = 1.78×10⁶C
The moon has approximately 1/4 of earths diameter, 1/50 of earths volume and 1/80 of earths mass
The six commonly recognised metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium....
I am thinking that maybe the problem is not with the calibration. It might be that the buffered solution is already expired since at this point the solution is already not stable and will give a different pH reading than what is expected.
Answer:
Q = 1057.5 [cal]
Explanation:
In order to solve this problem, we must use the following equation of thermal energy.

where:
Q = heat energy [cal]
Cp = specific heat = 0.47 [cal/g*°C]
T_final = final temperature = 32 [°C]
T_initial = initial temperature = 27 [°C]
m = mass of the substance = 450 [g]
Now replacing:
![Q=450*0.47*(32-27)\\Q=1057.5[cal]](https://tex.z-dn.net/?f=Q%3D450%2A0.47%2A%2832-27%29%5C%5CQ%3D1057.5%5Bcal%5D)