1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
4 years ago
9

Consider an object with s=12cm that produces an image with s′=15cm. Note that whenever you are working with a physical object, t

he object distance will be positive (in multiple optics setups, you will encounter "objects" that are actually images, but that is not a possibility in this problem). A positive image distance means that the image is formed on the side of the lens from which the light emerges.Part AFind the focal length of the lens that produces the image described in the problem introduction using the thin lens equation.Express your answer in centimeters, as a fraction or to three significant figures.f = 6.67 cm SubmitMy AnswersGive UpCorrectPart BConsidering the sign of f, is the lens converging or diverging?Considering the sign of , is the lens converging or diverging?convergingdivergingSubmitMy AnswersGive UpCorrectPart CWhat is the magnification m of the lens?Express your answer as a fraction or to three significant figures.m = -1.25SubmitMy AnswersGive UpCorrectPart DThink about the sign of s′ and the sign of y′, which you can find from the magnification equation, knowing that a physical object is always considered upright. Which of the following describes the nature and orientation of the image?Think about the sign of and the sign of , which you can find from the magnification equation, knowing that a physical object is always considered upright. Which of the following describes the nature and orientation of the image?real and uprightreal and invertedvirtual and uprightvirtual and invertedSubmitMy AnswersGive UpCorrectNow consider a diverging lens with focal length f=−15cm, producing an upright image that is 5/9 as tall as the object.Part EIs the image real or virtual? Think about the magnification and how it relates to the sign of s′.Is the image real or virtual? Think about the magnification and how it relates to the sign of .realvirtualSubmitMy AnswersGive UpCorrectPart FWhat is the object distance? You will need to use the magnification equation to find a relationship between sand s′. Then substitute into the thin lens equation to solve for s.Express your answer in centimeters, as a fraction or to three significant figures.s = 12.0 cm SubmitMy AnswersGive UpCorrectPart GWhat is the image distance?Express your answer in centimeters, as a fraction or to three significant figures.s′ = 24 cm SubmitMy AnswersGive UpIncorrect; Try Again; 12 attempts remaining; no points deductedA lens placed at the origin with its axis pointing along the x axis produces a real inverted image at x=−24cmthat is twice as tall as the object.Part HWhat is the image distance?Express your answer in centimeters, as a fraction or to three significant figures.s′ = 24.0 cm
Physics
1 answer:
Leni [432]4 years ago
3 0

A. 6.67 cm

The focal length of the lens can be found by using the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}

where we have

f = focal length

s = 12 cm is the distance of the object from the lens

s' = 15 cm is the distance of the image from the lens

Solving the equation for f, we find

\frac{1}{f}=\frac{1}{12 cm}+\frac{1}{15 cm}=0.15 cm^{-1}\\f=\frac{1}{0.15 cm^{-1}}=6.67 cm

B. Converging

According to sign convention for lenses, we have:

- Converging (convex) lenses have focal length with positive sign

- Diverging (concave) lenses have focal length with negative sign

In this case, the focal length of the lens is positive, so the lens is a converging lens.

C. -1.25

The magnification of the lens is given by

M=-\frac{s'}{s}

where

s' = 15 cm is the distance of the image from the lens

s = 12 cm is the distance of the object from the lens

Substituting into the equation, we find

M=-\frac{15 cm}{12 cm}=-1.25

D. Real and inverted

The magnification equation can be also rewritten as

M=\frac{y'}{y}

where

y' is the size of the image

y is the size of the object

Re-arranging it, we have

y'=My

Since in this case M is negative, it means that y' has opposite sign compared to y: this means that the image is inverted.

Also, the sign of s' tells us if the image is real of virtual. In fact:

- s' is positive: image is real

- s' is negative: image is virtual

In this case, s' is positive, so the image is real.

E. Virtual

In this case, the magnification is 5/9, so we have

M=\frac{5}{9}=-\frac{s'}{s}

which can be rewritten as

s'=-M s = -\frac{5}{9}s

which means that s' has opposite sign than s: therefore, the image is virtual.

F. 12.0 cm

From the magnification equation, we can write

s'=-Ms

and then we can substitute it into the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}\\\frac{1}{f}=\frac{1}{s}+\frac{1}{-Ms}

and we can solve for s:

\frac{1}{f}=\frac{M-1}{Ms}\\f=\frac{Ms}{M-1}\\s=\frac{f(M-1)}{M}=\frac{(-15 cm)(\frac{5}{9}-1}{\frac{5}{9}}=12.0 cm

G. -6.67 cm

Now the image distance can be directly found by using again the magnification equation:

s'=-Ms=-\frac{5}{9}(12.0 cm)=-6.67 cm

And the sign of s' (negative) also tells us that the image is virtual.

H. -24.0 cm

In this case, the image is twice as tall as the object, so the magnification is

M = 2

and the distance of the image from the lens is

s' = -24 cm

The problem is asking us for the image distance: however, this is already given by the problem,

s' = -24 cm

so, this is the answer. And the fact that its sign is negative tells us that the image is virtual.

You might be interested in
A mass of 2 kg is hung off a spring,which extends 2 cm determine the energy stored in the spring? ​
aev [14]
F=kx
2=k*2
2/2=k
1=k

1 J = answer
3 0
3 years ago
Which best describes the definition for the atomic mass of an element
Verizon [17]

Answer:

Atomic mass is the weighted average mass of an atom of an element based on the relative natural abundance of that element's isotopes. - Mass number: count of the total number of protons and neutrons in an atom's nucleus.

7 0
3 years ago
Read 2 more answers
A metal sphere of radius 2.0 cm carries an excess charge of 3.0 μC. What is the electric field 6.0 cm from the center of the sph
Nonamiya [84]

Answer:

The electric field is  E = 7.5 *10^{6} \ N/C

Explanation:

From the question we are told that

    The radius of the metal sphere is  R = 2.0 \ cm  =  0.02 \ m

     The excess charge which the metal sphere carries is  q =  3.0 \mu C  =  3.0*10^{-6} \ C

      The distance of the position being to the center is D = 6.0 \ cm  = 0.06 \ m

       The coulomb constant is   k =9*10^{9} \  N \cdot m^2 /C^2

Generally the electric field is mathematically represented as  

        E = \frac{k *  q}{D^2}

substituting values

        E = \frac{9*10^{9} *  30.*10^{-6}}{(0.06)^2}

      E = 7.5 *10^{6} \ N/C

5 0
3 years ago
Suppose the number of coils in the solenoid of an electromagnet is increased. What happens to the electromagnet?
Akimi4 [234]

Answer:

Its strength becomes greater.

Explanation:

5 0
2 years ago
Read 2 more answers
What is all matter made up of?
aliya0001 [1]
All matter is made up of atoms
3 0
3 years ago
Read 2 more answers
Other questions:
  • If electrical energy costs 7¢/kW•h, calculate
    14·1 answer
  • (Use the Pythagorean theorem to answer the question.) An airplane takes off going straight west at 340 km/h for 1 hour, then tur
    8·1 answer
  • Technician A says that pressure below atmospheric pressure is called vacuum and is measured in inches of mercury​ (Hg). Technici
    10·2 answers
  • A grapefruit has a weight on earth of 4.9 newtons. What is the grapefruit's mass?
    10·2 answers
  • A uniform disk a uniform hoop and a uniform sphere are released at the same time at the top of an inclined ramp. They all roll w
    5·1 answer
  • Why is the crust less dense than the core
    14·1 answer
  • Which of the following is the primary function of groundwater?
    9·2 answers
  • Why would a skier try to lower his center of gravity?
    8·1 answer
  • A 12,500 kg railroad freight car travels on a level track at a speed of 5.2 m/s. It collides and couples with a 22,600 kg second
    8·1 answer
  • 6. Compare Which of the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!