Firstly they have a acceleration downwards due the force downwards due they gravitational field acting on it's mass.
as it falls it gains speed, and as it gains speed the air Resistance which is a upward force actin on the drop increases, eventually the rain drop's upward and downward forces are balanced and hence there is no RESULTANT force therefore no acceleration, so the drops falls in constant speed (terminal verlocity is a better term)
Are you wondering that why is the raindrop still moving given that the forces are balanced? If so according to Newton's 1st law an object will keep moving or Remain at rest until a RESULTANT force acts on it.
Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51
<h2>
Answer:</h2>
<h2>3m</h2>
<h3>The wavelength of 100-MHz radio waves is 3 m, yet using the sensitivity of the resonant frequency to the magnetic field strength, details smaller than a millimeter can be imaged.</h3>
<h2>Hope this helps you ❤️</h2>
<h2>MaRk mE aS braiNliest ❤️</h2>