The heat of fusion is always less than the heat of vaporization because at the time of the phase change from solid to liquid, the molecules only require energy to escape from the crystalline network, but it preserves the other molecular junctions.
In the case of the phase change between liquid to steam, there must be a total breakdown of that intermolecular networks and therefore apply energy so that they are not again attracted by the conditions of their environment.
Answer:
-929.5Joules
Explanation:
To get the work done by sam, we will calculate the kinetic energy of sam expressed as;
KE = 1/2mv²
m is the mass = 1100kg
v is the velocity = 1.3m/s
KE = 1/2(1100)(1.3)²
KE = 550(1.69)
KE = 929.5Joules
Since Sam is opposing the direction of movement, work done by him will be a negative work i.e -929.5Joules
Answer:
1/2mv² = ke²
Explanation:
Let's suppose the material in question is a spring with spring constant k, mass m and position k, the kinetic energy possessed by the string will be;
K.E = 1/2mass×velocity² i.e 1/2mv²
Its elastic potential energy will be the work done on the spring when stretched which is equal to 1/2kx²
E.P = 1/2kx²
The equation describing the case where the kinetic energy is twice the elastic potential energy will be;
K.E = 2EP... 1)
Substituting the KE and EP formula into (1), we have;
1/2mv² = 2(1/2ke²)
1/2mv² = ke² which gives the required equation
Weathering, Erosion, deposition, acid rain, precipitation
Explanation: