definition of breeder reactors.
These are a type of nuclear reactors which produce more fissile material than they consume
Advantages: Breeder reactors produce Pu-239 which can be extensively used as a nuclear fuel. Also, Pu-239 can absorb neutron to form Pu-240, which is another fertile material.[1]
The name and strength of the force holding the block up is 50 N upward - Normal force.
The given parameters:
- <em>Mass of the block, m = 5 kg</em>
The weight of the block acting downwards due to gravity is calculated as follows;
W = mg
where;
- <em>g is acceleration due to gravity = 10 m/s²</em>
W = 5 x 10
W = 50 N <em>(</em><em>downwards</em><em>)</em>
Since the block is at rest, an a force equal to the weight of the block must be acting upwards. This force is known as normal reaction.
Fₙ = 50 N <em>(</em><em>upwards</em><em>)</em>
Thus, the name and strength of the force holding the block up is 50 N upward - Normal force.
Learn more about Normal force here: brainly.com/question/14486416
Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e