Answer:
5.83 g
Explanation:
First, you must start with a balanced equation so you can see the mole ratios.
NaOH + H₃BO₃ --> NaBO₂ + 2H₂O
You can see that it takes 1 mole of sodium hydroxide to form 1 mole of sodium borate. 1:1 ratio
Now you must calculate how many moles of NaOH 35.47 g equals.
Na = 22.99 amu
O = 15.99 amu
H = 1.008 amu
NaOH = 39.997 amu
35.47 g ÷ 39.997 amu = 0.08868 moles of NaOH
Since it's a 1:1 ratio, the same number of moles of NaBO₂ is created. Now you must convert moles to grams.
Na = 22.9 amu
B = 10.81 amu
2 O = 31.998 amu
NaBO₂ = 65.798 amu
0.08868 moles x 65.798 = 5.83 g
Answer:
Cu
Explanation:
In the given reaction of the addition of copper to nitric acid,
Cu(s) + 4HNO3(aq) -> Cu(NO3)2(aq) + 2NO2(g) + 2H2O(l)
Cu or copper would be characterized as the reducing agent in this reaction. It is the chemical substance that is losing electrons and being oxidized due to this reduction/loss in this redox reaction as it is the metal that loses electrons by reacting with the non-metals.
The given question is incomplete. The complete question is :
In each row check off the boxes that apply to the underlined reactant. The underlined reactant acts as a... (check all that apply)
1. 
here underlined is 
A. Brønsted-Lowry acid
B. Brønsted-Lowry base
C. Lewis acid
D. Lewis base
2. 
Here underlined is 
A. Brønsted-Lowry acid
B. Brønsted-Lowry base
C. Lewis acid
D. Lewis base
3. 
Here underlined is 
A. Brønsted-Lowry acid
B. Brønsted-Lowry base
C. Lewis acid
D. Lewis base
Answer: 1. Brønsted-Lowry acid
2. Lewis base
3. Brønsted-Lowry base
Explanation:
According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
1. 
As
is donating a proton , it acts as a bronsted acid.
2. 
As
contains a lone pair of electron on nitrogen , it can easily donate electrons to
and act as lewi base.
3. 
As
is accepting a proton , it acts as a bronsted base.