Answer:
the deep sea floor. Known as the oceanic crust.
Explanation:
The deep seafloor (the oceanic crust) is made almost entirely of basaltic rocks, with peridotite underneath in the mantle. Basalts are also erupted above the Earth's great subduction zones, either in volcanic island arcs or along the edges of continents.
Hope this helps :)
<u><em>Answer:</em></u>
- The correct option is C.
- Formation of a precipitate
<u><em>Explanation:</em></u>
During a chemical reaction, new substances are formed known as a products, mostly reaction occur and their product is obtained as precipitates.
<u><em>Example</em></u>
Arylidene-2-thiobarbituric acid is obtained as precipitates when aldehyde and thiobarbituric acid react to each other.
melting of a substance
It is just indication of physical changes, like melting of ice, composition remained same as before.
boiling of a substance
It is just indication of physical changes, like boiling of water into vapors, composition remained same as before.
freezing of a substance
It is just indication of physical changes, like freezing of water into ice, composition remained same as before
Answer:
with the molecular formula C3H5(ONO2)3, has a high nitrogen content (18.5 percent) and contains sufficient oxygen atoms to oxidize the carbon and hydrogen atoms while nitrogen is being liberated, so that it is one of the most powerful explosives known.
Explanation:
NTG reduces preload via venous dilation, and achieves modest afterload reduction via arterial dilation. These effects result in decreased myocardial oxygen demand. In addition, NTG induces coronary vasodilation, thereby increasing oxygen delivery.
The Law of Conservation of Mass states that the mass of reactants entering a reaction must be equal to the mass of the products exiting it. In this case, we only have 2 reactants, Fe and S, and we only have 1 product, FeS. Therefore we expect the total mass of the Fe and S reactants to equal the mass of FeS. This gives us 112 g + 64 g = 176 g of FeS, which is choice D.
Answer:
3.0 × 10²⁰ molecules
Explanation:
Given data:
Mass of ethanol = 2.3 × 10⁻²°³ g
Number of molecules = ?
Solution:
Number of moles of ethanol:
Number of moles = mass/ molar mass
Number of moles = 2.3 × 10⁻²°³ g / 46.07 g/mol
Number of moles = 0.05 × 10⁻²°³ mol
Number of molecules:
One mole = 6.022 × 10²³ molecules
0.05 × 10⁻²°³ mol × 6.022 × 10²³ molecules / 1 mol
0.30 × 10²⁰°⁷ molecules
3.0 × 10¹⁹°⁷ molecules which is almost equal to 3.0 × 10²⁰ molecules.