According to Newton second law of motion, the resultant force is directly proportional to the rate of change in momentum while maintaining other factors constant. Therefore, F = (mv-mu)/t where F is the resultant force , m is the mass of the object, v is the final velocity and u is the initial velocity.
Hence, Ft = mv-mu, but impulse is given by force multiplied by time, thus, impulse is equivalent to the change in momentum.
Impulse = Ft
= 325 × 2.2 sec
= 715 Ns
Beta decay is very complex phenomena in natural radioactive decay. There are 3 types of Beta decay.
B+ decay (Beta plus or Beta positive or positron decay):
is the conversion of a proton into a neutron plus a positron and an electron neutrino.
B- decay (Beta negative or Beta nought):
is the conversion of a neutron into a proton plus an electron and a electron antineutrino.
Note: a positron is the a positive electron or the antiparticle of the electron.
Hope it helps
The term used to describe the quantity of matter that a body possesses is mass.
Answer:In a series circuit, adding more resistors increases total resistance and thus lowers current. But the opposite is true in a parallel circuit because adding more resistors in parallel creates more choices and lowers total resistance. If the same battery is connected to the resistors, current will increase.
Explanation:
Answer:
Explanation:
Parameters given:
Mass of Puck 1, m = 1 kg
Mass of Puck 2, M = 1 kg
Initial velocity of Puck 1, u = 20 m/s
Initial velocity of Puck 2, U = 0 m/s
Final velocity of Puck 1, v = 5 m/s
Since we are told that momentum is conserved, we apply the principle of conservation of momentum:
Total initial momentum of the system = Total final momentum of the system
mu + MU = mv + MV
(1 * 20) + (1 * 0) = (1 * 5) + (1 * V)
20 = 5 + V
V = 20 - 5 = 15 m/s
Puck 2 moves with a velocity of 15 m/s