Answer:
(a) A = 0.0800 m, λ = 20.9 m, f = 11.9 Hz
(b) 250 m/s
(c) 1250 N
(d) Positive x-direction
(e) 6.00 m/s
(f) 0.0365 m
Explanation:
(a) The standard form of the wave is:
y = A cos ((2πf) t ± (2π/λ) x)
where A is the amplitude, f is the frequency, and λ is the wavelength.
If the x term has a positive coefficient, the wave moves to the left.
If the x term has a negative coefficient, the wave moves to the right.
Therefore:
A = 0.0800 m
2π/λ = 0.300 m⁻¹
λ = 20.9 m
2πf = 75.0 rad/s
f = 11.9 Hz
(b) Velocity is wavelength times frequency.
v = λf
v = (20.9 m) (11.9 Hz)
v = 250 m/s
(c) The tension is:
T = v²ρ
where ρ is the mass per unit length.
T = (250 m/s)² (0.0200 kg/m)
T = 1250 N
(d) The x term has a negative coefficient, so the wave moves to the right (positive x-direction).
(e) The maximum transverse speed is Aω.
(0.0800 m) (75.0 rad/s)
6.00 m/s
(f) Plug in the values and find y.
y = (0.0800 m) cos((75.0 rad/s) (2.00 s) − (0.300 m⁻¹) (1.00 m))
y = 0.0365 m
ANY force causes an object to accelerate, just as long as there are not
some other forces on the object that cancel out the first one.
Are you looking for the answer ... an "UNBALANCED" force ?
That's a very poor way to describe it, because there's no such thing
as a balanced or unbalanced force. The thing that's balanced or
unbalanced is a GROUP of forces, not a single force.
Answer:
7.13mL
Explanation:
P₁V₁T₁ = P₂V₂T₂
P₁ = 3atm , V₁ = 2.1 mL , T₁ = 273 + 4 =277K
P₂ = 0.95atm , V₂ = ? , T₂ = 273 + 25 =298K
V₂ = P₁V₁T₂ / P₂T₁
V₂ = (3atm)(2.1 mL )(298K) / (0.95atm)(277K)
V₂ = 7.13mL
The average it the constant speed.
trueee...................