The polynomial p(x)=x^3+7x^2-36p(x)=x 3 +7x 2 −36p, left parenthesis, x, right parenthesis, equals, x, cubed, plus, 7, x, square
Iteru [2.4K]
Answer:
(x-2)(x+3)(x+6)
Step-by-step explanation:
Given the polynomial function p(x)=x^3+7x^2-36
We are to write it as a product of its linear factor
Assuming the value of x that will make the polynomial p(x) to be zero
Let x = 2
P(2) = 2³+7(2)²-36
P(2) = 8+7(4)-36
P(2) = 8+28-36
P(2) = 0
Since p(2) = 0 hence x-2 is one of the linear factors
Also assume x = -3
P(-3) = (-3)³+7(-3)²-36
P(-3) = -27+7(9)-36
P(-3) = -27+63-36
P(-3) = 36-36
P(-3) = 0
Since p(-3) = 0, hence x+3 is also a factor
The two linear pair are (x-2)(x+3)
(x-2)(x+3) = x²+3x-2x-6
(x-2)(x+3) = x²+x-6
To get the third linear function, we will divide x^3+7x^2-36 by x²+x-6 as shown in the attachment.
x^3+7x^2-36/x²+x-6 = x+6
Hence the third linear factor is x+6
x^3+7x^2-36 = (x-2)(x+3)(x+6)
Three consecutive even integers whose sum is -48
<h3>
Answer: 83.85%</h3>
This value is approximate.
==========================================================
Explanation:
Let's compute the z score for x = 40
z = (x-mu)/sigma
z = (40-47)/7
z = -1
We're exactly one standard deviation below the mean.
Repeat these steps for x = 68
z = (x-mu)/sigma
z = (68-47)/7
z = 3
This score is exactly three standard deviations above the mean.
Now refer to the Empirical Rule chart below. We'll add up the percentages that are between z = -1 and z = 3. This consists of the two pink regions (each 34%), the right blue region (13.5%) and the right green region (2.35%). These percentages are approximate.
34+34+13.5+2.35 = 83.85
<u>Roughly 83.85%</u> of the one-mile roadways have between 40 and 68 potholes.
Answer: A add the equations and C: Subtract the bottom equation from the top equation.
Step-by-step explanation: By adding the equations, you are left with
12x=8 which successfully eliminates the y values and subracting the bottom equation from the top equation.
Hope this helps! :)
2 feet = 24 inches
24 inches divided by 1 inch = 24
Answer is 24 pillows.