We can calculate years by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span>From the half-life data, we can calculate for k.
1/2(Ao) = Ao e^-k(1620)
<span>k = 4.28 x 10^-4
</span>
0.125 = 1 e^-<span>4.28 x 10^-4 (</span>t)
t = 4259 years
Answer:
The amount of water converted from liquid to gas with 6,768 joules is approximately 3.035 g
Explanation:
The amount of heat required to convert a given amount of liquid to gas at its boiling point is known as the latent heat of evaporation of the liquid
The latent heat of evaporation of water, Δ
≈ 2,230 J/g
The relationship between the heat supplied, 'Q', and the amount of water in grams, 'm', evaporated is given as follows
Q = m × Δ
Therefore, the amount of water, 'm', converted from liquid to gas at the boiling point temperature (100°C), when Q = 6,768 Joules, is given as follows;
6,768 J = m × 2,230 J/g
∴ m = 6,768 J /(2,230 J/g) ≈ 3.035 g
The amount of water converted from liquid to gas with 6,768 joules = m ≈ 3.035 g.
1. 5 atoms
2. 5 atoms
3. 11 atoms
4. 5 atoms
5. 18 atoms