Answer: <em>Hopefully this helps! sorry if not. :))</em>
<em></em>
<em>Speed has a greater impact on mass because its increases in velocity have an exponentially greater impact on translational kinetic energy because kinetic energy is proportional to velocity squared. Doubling an object's mass would only double its kinetic energy, however doubling its momentum would quadruple its velocity.</em>
Answer:
causes a substance to change from a liquid to a solid.
Explanation:
Answer:
A) During this procedure ( hypoventilation ) The CO2 in the arterial blood vessels and the lungs increases and this drives the PH level in the system lower, and the equilibrium will shift to the right. this is because the Blood-PH level is controlled by CO2 - bicarbonate buffer system
B) The blood PH may rise to 7.60 during Hyperventilation because the removal of CO2 from the lungs causes the increase in
which is directly proportional to the increase in Blood PH levels
C) Hyper ventilation before a dash would be useful because it will remove excessive Hydrogen ions and and raise the Blood PH levels in preparedness of the production of acids like Lactic acid
Explanation:
A) During this procedure ( hypoventilation ) The CO2 in the arterial blood vessels and the lungs increases and this drives the PH level in the system lower, and the equilibrium will shift to the right. this is because the Blood-PH level is controlled by CO2 - bicarbonate buffer system
⇄ 
B) The blood PH may rise to 7.60 during Hyperventilation because the removal of CO2 from the lungs causes the increase in
which is directly proportional to the increase in Blood PH levels
C) Hyper ventilation before a dash would be useful because it will remove excessive Hydrogen ions and and raise the Blood PH levels in preparedness of the production of acids like Lactic acid
The characteristics of the α and β particles allow to find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the beta particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
In Rutherford's experiment, the positive particles directed to the gold film were measured on a phosphorescent screen that with each arriving particle a luminous point is seen.
The particles in this experiment are α particles that have two positive charge and two no charged is a helium nucleus.
The test that can be carried out is to place a small ours of Thorium in front of a phosphorescent screen and see if it has flashes, with the amount of them we can determine the amount of particle emitted per unit of time.
Thorium has several isotopes, with different rates and types of emission:
- ²³²Th emits α particles, it is the most abundant 99.9%
- ²³⁴Th emits β particles, exists in small traces.
In this case they indicate that the material used is ²³⁴Th, which emits β particles that are electrons, the detection of these particles is more difficult since it has one negative charge, it has much lower mass, but they can travel further than the particles α, therefore, for what type of isotope we have, we can start measuring at a small distance and increase the distance until the reading is constant. At this point all the particles that arrive are β, which correspond to ²³⁴Th.
Neutron detection is much more difficult since these particles have no charge and therefore do not interact with electrons and no flashing on the screen is varied.
In conclusion with the characteristics of the α and β particles we can find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the β particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
Learn more about radioactive emission here: brainly.com/question/15176980
Answer:
i could help you can you explain more plzzzzzz i really need points
Explanation: