1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
3 years ago
15

What is projectile motion​

Engineering
2 answers:
Alenkinab [10]3 years ago
5 0

\boxed{\large{\bold{\blue{ANSWER~:) }}}}

  • If an object is given an initial velocity in any direction and then allowed to travel freely under gravity only, it is called a projectile motion
OleMash [197]3 years ago
5 0

Explanation:

of course, it is called a projectile motion

You might be interested in
For a bronze alloy, the stress at which plastic deformation begins is 266 MPa and the modulus of elasticity is105 GPa.
pentagon [3]

Answer:

88750 N

Explanation:

given data:

plastic deformation σy=266 MPa=266*10^6 N/m^2

cross-sectional area Ao=333 mm^2=333*10^-6 m^2

solution:

To determine the maximum load that can be applied without

plastic deformation (Fy).

Fy=σy*Ao

   =88750 N

7 0
3 years ago
Mohr's circle represents: A Orientation dependence of normal and shear stresses at a point in mechanical members B The stress di
blsea [12.9K]

Answer:

The correct answer is A : Orientation dependence of normal and shear stresses at a point in mechanical members

Explanation:

Since we know that in a general element of any loaded object the normal and shearing stresses vary in the whole body which can be mathematically represented as

\sigma _{x'x'}=\frac{\sigma _{xx}+\sigma _{yy}}{2}+\frac{\sigma _{xx}-\sigma _{yy}}{2}cos(2\theta )+\tau _{xy}sin(2\theta )

And \tau _{x'x'}=-\frac{\sigma _{xx}-\sigma _{yy}}{2}sin(2\theta )+\tau _{xy}cos(2\theta )

Mohr's circle is the graphical representation of the variation represented by the above 2 formulae in the general oriented element of a body that is under stresses.

The Mohr circle is graphically displayed in the attached figure.

4 0
3 years ago
About what thickness of aluminum is needed to stop a beam of (a) 2.5-MeV electrons, (b) 2.5-MeV protons, and (c) 10-MeV alpha pa
Nana76 [90]

The thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.

<h3>Thickness of the aluminum</h3>

The thickness of the aluminum can be determined using from distance of closest approach of the particle.

K.E = \frac{2KZe^2}{r}

where;

  • Z is the atomic number of aluminium  = 13
  • e is charge
  • r is distance of closest approach = thickness of aluminium
  • k is Coulomb's constant = 9 x 10⁹ Nm²/C²
<h3>For 2.5 MeV electrons</h3>

r = \frac{2KZe^2}{K.E} \\\\r = \frac{2 \times 9\times 10^9 \times 13\times (1.6\times 10^{-19})^2}{2.5 \times 10^6 \times 1.6 \times 10^{-19}} \\\\r = 1.5 \times 10^{-14} \ m

<h3>For 2.5 MeV protons</h3>

Since the magnitude of charge of electron and proton is the same, at equal kinetic energy, the thickness will be same. r = 1.5 x 10⁻¹⁴ m.

<h3>For 10 MeV alpha-particles</h3>

Charge of alpah particle = 2e

r = \frac{2KZe^2}{K.E} \\\\r = \frac{2 \times 9\times 10^9 \times 13\times (2 \times 1.6\times 10^{-19})^2}{10 \times 10^6 \times 1.6 \times 10^{-19}} \\\\r = 1.5 \times 10^{-14} \ m

Thus, the thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.

Learn more about closest distance of approach here: brainly.com/question/6426420

7 0
2 years ago
A light bulb is switched on and within a few minutes its temperature becomes constant. Is it at equilibrium or steady state.
EleoNora [17]

Answer:

The temperature attains equilibrium with the surroundings.  

Explanation:

When the light bulb is lighted we know that it's temperature will go on increasing as the filament of the bulb has to  constantly dissipates energy during the time in which it is on. Now this energy is dissipated as heat as we know it, this heat energy is absorbed by the material of the bulb which is usually made up of glass, increasing it's temperature. Now we know that any object with temperature above absolute zero has to dissipate energy in form of radiations.

Thus we conclude that the bulb absorbs as well as dissipates it's absorbed thermal energy. we know that this rate is dependent on the temperature of the bulb thus it the temperature of the bulb does not change we can infer that an equilibrium has been reached in the above 2 processes i.e the rate of energy absorption equals the rate of energy dissipation.

Steady state is the condition when the condition does not change with time no matter whatever the surrounding conditions are.

6 0
3 years ago
g For this project you are required to perform Matrix operations (Addition, Subtraction and Multiplication). For each of the ope
Kruka [31]

Answer:

C++ code is explained below

Explanation:

#include<iostream>

using namespace std;

//Function Declarations

void add();

void sub();

void mul();

//Main Code Displays Menu And Take User Input

int main()

{

  int choice;

  cout << "\nMenu";

  cout << "\nChoice 1:addition";

  cout << "\nChoice 2:subtraction";

  cout << "\nChoice 3:multiplication";

  cout << "\nChoice 0:exit";

 

  cout << "\n\nEnter your choice: ";

 

  cin >> choice;

 

  cout << "\n";

 

  switch(choice)

  {

      case 1: add();

              break;

             

      case 2: sub();

              break;

             

      case 3: mul();

              break;

     

      case 0: cout << "Exited";

              exit(1);

     

      default: cout << "Invalid";      

  }

  main();  

}

//Addition Of Matrix

void add()

{

  int rows1,cols1,i,j,rows2,cols2;

 

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  //Taking First Matrix

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  //Printing 1st Matrix

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

  //Taking Second Matrix

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  //Displaying second Matrix

  cout << "\n";

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

  //Displaying Sum of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      cout << "\n";

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]+m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void sub()

{

  int rows1,cols1,i,j,k,rows2,cols2;

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

  cout << "\n";

  //Displaying Subtraction of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]-m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void mul()

{

  int rows1,cols1,i,j,k,rows2,cols2,mul[10][10];

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  cout << "\n";

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  cout << "\n";

  //Displaying Matrix 2

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

     

  if(cols1!=rows2)

      cout << "operation is not supported";

  else

  {

      //Initializing results as 0

      for(i = 0; i < rows1; ++i)

  for(j = 0; j < cols2; ++j)

  mul[i][j]=0;

// Multiplying matrix m1 and m2 and storing in array mul.

  for(i = 0; i < rows1; i++)

  for(j = 0; j < cols2; j++)

  for(k = 0; k < cols1; k++)

  mul[i][j] += m1[i][k] * m2[k][j];

// Displaying the result.

  cout << "\n";

  for(i = 0; i < rows1; ++i)

      for(j = 0; j < cols2; ++j)

      {

      cout << " " << mul[i][j];

      if(j == cols2-1)

      cout << endl;

      }

      }  

  main();

 }

5 0
3 years ago
Other questions:
  • Pick a subjectarea/field/topic that you are interested in. For each of the following Bonham- Carver uses of GIS give an example
    7·1 answer
  • A cast-iron tube is used to support a compressive load. Knowing that E 5 10 3 106 psi and that the maximum allowable change in l
    11·1 answer
  • While there are many ways to solve this problem, one strategy is to calculate the volume of any metal's unit cell given its theo
    14·1 answer
  • An intranet is a restricted network that relies on Internet technologies to provide an Internet-like environment within the comp
    11·1 answer
  • A bolt is tightened, subjecting its shank to a tensile stress of 80 kpsi and a torsional shear stress of 50 kpsi at a critical p
    7·1 answer
  • How to walk a dog dududududududududesssss
    6·2 answers
  • Steam in a heating system flows through tubes whose outer diameter is 5 cm and whose walls are maintained at a temperature of 19
    13·1 answer
  • Respond with TRUE if the symbol of the valve shown below is
    10·1 answer
  • Which Two moon phases are directly opposite each other?
    9·2 answers
  • Lets Try This: study the pictures. Describe what you see and think about it. write your answer on a sheet of paper. home room
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!