Answer:
260.34g
Explanation:
First, you need to know what angelic acid is comprised of. It is written as C₅H₈O₂.
In order to solve for the mass of 2.6 moles of angelic acid, you need the mass of 1 mole of angelic acid. This can be found by adding the masses from the periodic table, like shown below:
5 carbon atoms = (5)(12.01g) = 60.05g
8 hydrogen atoms = (8)(1.01) = 8.08g
2 oxygen atoms = (2)(16) = 32g
angelic acid = 60.05 + 8.08 + 32 = 100.13g
Then, set up a basic stoichiometric equation and solve. The units should cancel out.
To answer this problem, we must make assumptions for simplicity. The first assumption is that, the system only consist of these 3 gases. The second assumption is that, these gases behave ideally. Thus, from Dalton's Law of Partial Pressure, the total pressure is simply the sum of their individual partial pressures.
Total pressure = 2.5 + 0.8 + 3.4 = <em>6.7 atm</em>
Answer:
453.592 grams
Explanation:
Given
Mass = 1 lb
Required.
Convert to grams using dimensional analysis
Represent 1 lb with x g
In unit conversion, we have that.
1 lb = 453.592 g
So:
Getting the equivalent of lb in g, we have:
x g = 1 lb * (453.592 g/ 1 lb)
x g = 1 * 453.592 g
x g = 453.592 grams
Hence:
The equivalent of 1 lb in grams is 453.592 grams
PH= -log [H+]
= - (log 0.034)
= - (-1.5)
= 1.5