Answer:
I would say the answer is A... but I'm not so sure ....
Answer:
THE RUBBER BALL
Explanation:
From the question we are told that
The mass of the rubber ball is 
The initial speed of the rubber ball is 
The final speed at which it bounces bank 
The mass of the clay ball is 
The initial speed of the clay ball is 
The final speed of the clay ball is 
Generally Impulse is mathematically represented as
where
is the change in the linear momentum so

For the rubber is


=> 
For the clay ball


=> 
So from the above calculation the ball with the a higher magnitude of impulse is the rubber ball
Answer:
25.33 rpm
Explanation:
M = 100 kg
m1 = 22 kg
m2 = 28 kg
m3 = 33 kg
r = 1.60 m
f = 20 rpm
Let the new angular speed in rpm is f'.
According to the law of conservation of angular momentum, when no external torque is applied, then the angular momentum of the system remains constant.
Initial angular momentum = final angular momentum
(1/2 x M x r^2 + m1 x r^2 + m2 x r^2 + m3 x r^2) x ω =
(1/2 x M x r^2 + m1 x r^2 + m3 x r^2 ) x ω'
(1/2 M + m1 + m2 + m3) x 2 x π x f = (1/2 M + m1 + m3) x 2 x π x f'
( 1/2 x 100 + 22 + 28 + 33) x 20 = (1/2 x 100 + 22 + 33) x f'
2660 = 105 x f'
f' = 25.33 rpm
Answer:
The acceleration of the ball is 4.18 [m/s^2]
Explanation:
By Newton's second law we can find the acceleration of the ball
![F = m*a\\where:\\F = force applied [N] or [kg*m/s^2]\\m = mass of the ball [kg]\\a = acceleration [m/s^s]](https://tex.z-dn.net/?f=F%20%3D%20m%2Aa%5C%5Cwhere%3A%5C%5CF%20%3D%20force%20applied%20%5BN%5D%20or%20%5Bkg%2Am%2Fs%5E2%5D%5C%5Cm%20%3D%20mass%20of%20the%20ball%20%5Bkg%5D%5C%5Ca%20%3D%20acceleration%20%5Bm%2Fs%5Es%5D)
Now we have:
![a = F/m\\a = \frac{1.8 [kg*m/s^s]}{0.43[kg]} \\a = 4.18 [kg]](https://tex.z-dn.net/?f=a%20%3D%20F%2Fm%5C%5Ca%20%3D%20%5Cfrac%7B1.8%20%5Bkg%2Am%2Fs%5Es%5D%7D%7B0.43%5Bkg%5D%7D%20%5C%5Ca%20%3D%204.18%20%5Bkg%5D)
¡Hellow!
For this problem, first, lets convert the seconds in hours:
5,4x10³
5400
h = sec / 3600
h = 5400 s / 3600
h = 1,5
Let's recabe information:
d (Distance) = 386 km
t (Time) = 1,5 h
v (Velocity) = ?
For calculate velocity, let's applicate formula:

Reeplace according we information:
386 km = v * 1,5 h
v = 386 km / 1,5 h
v = 257,33 km/h
The velocity of the train is of <u>257,33 kilometers for hour.</u>
<u></u>
Extra:
For convert km/h to m/s, we divide the velocity of km/h for 3,6:
m/s = km/h / 3,6
Let's reeplace:
m/s = 257,33 km/h / 3,6
m/s = 71,48
¿Good Luck?