Answer:
θ₀ = 84.78° (OR) 5.22°
Explanation:
This situation can be treated as projectile motion. The parameters of this projectile motion are:
R = Range of Projectile = 150 m
V₀ = Launch Speed of Projectile = 90 m/s
g = 9.8 m/s²
θ₀ = Launch angle (OR) Angle of Elevation = ?
The formula for range of a projectile is given as:
R = V₀² Sin 2θ₀/g
Sin 2θ₀ = Rg/V₀²
Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²
2θ₀ = Sin⁻¹ (0.18)
θ₀ = 10.45°/2
<u>θ₀ = 5.22°</u>
Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:
θ₀ = 90° - 5.22°
<u>θ₀ = 84.78°</u>
It is beacuse of fluid If there is no fluid, there is no drag. Drag is generated by the difference in velocity between the solid object and the fluid. If this statement is correct then how can there be drag in space if there is no air?
Answer:
Velocity
Explanation:
"The principle is that the slope of the line on a position-time graph is equal to the velocity of the object. If the object is moving with a velocity of +4 m/s, then the slope of the line will be +4 m/s."
^^This explanation is from physicsclassroom.com
-0 m/s
- average velocity=displacement/time
- the runners displacement is zero so her average velocity must be zero