Mars.
Water exists as small amounts of ice on Mars and as water vapor. It is suspected that Mars used to have flowing water on it, but that there is none left now.
Answer:

Explanation:
Density can be found by dividing the mass by the volume.

The mass of the quartz is 30 grams and the volume is 6 cubic centimeters.

Substitute the values into the formula.

Divide.

The density of this piece of quartz is 5 grams per cubic centimeter.
Answer:
A fire hose must be able to shoot water to the top of a building 35.0 m tall ... Water enters this hose at a steady rate of 0.500 m3/s and shoots out of a round nozzle. ... I know that Flow rate=0.500 m3/s=A*V. I know the pressure needed to ... The first equation has no potential while the second has no kinetic.
Explanation:
hmax = 5740.48 m. The maximum height that a cannonball fired at 420 m/s at a 53.0° angles is 5740.48m.
This is an example of parabolic launch. A cannonball is fired on flat ground at 420 m/s at a 53.0° angle and we have to calculate the maximum height that it reach.
V₀ = 420m/s and θ₀ = 53.0°
So, when the cannonball is fired it has horizontal and vertical components:
V₀ₓ = V₀ cos θ₀ = (420m/s)(cos 53°) = 252.76 m/s
V₀y = V₀ cos θ₀ = (420m/s)(cos 53°) = 335.43m/s
When the cannoball reach the maximum height the vertical velocity component is zero, that happens in a tₐ time:
Vy = V₀y - g tₐ = 0
tₐ = V₀y/g
tₐ = (335.43m/s)/(9.8m/s²) = 34.23s
Then, the maximum height is reached in the instant tₐ = 34.23s:
h = V₀y tₐ - 1/2g tₐ²
hmax = (335.43m/s)(34.23s)-1/2(9.8m/s²)(34.23s)²
hmax = 11481.77m - 5741.29m
hmax = 5740.48m