Answer: The answer is C
Explanation: Sound waves tend to spread farther the deeper the sound is, and the waves go lower then the second example, deeming it is louder.
Answer:
The correct option is: a. reversible reaction
Explanation:
In thermodynamics, Gibb's free energy is the quantitative measure of the <u>spontaneity or feasibility </u>of a chemical reaction, at fixed temperature and pressure.
It can also be described as the <u>maximum available work obtained from a closed system</u>. This maximum work can only be achieved in a reversible process, <u>at fixed pressure and temperature.</u>
<u>The Gibb's free energy (ΔG) is given by</u>: ΔG = ΔH - T.ΔS
when the thermal energy is the energy contained within a system that is responsible for its temperature.
and when the thermal energy is can be determined by this formula:
q = M * C *ΔT
when q is the thermal energy
and M is the mass of water = 100 g
and C is the specific heat capacity of water = 4.18 joules/gram.°C
and T is the difference in Temperature = 50 °C
So by substitution:
∴ q = 100 g * 4.18 J/g.°C * 50
= 20900 J = 20.9 KJ
Answer:
c and d are correct
Explanation:
In A, false because in Valence Electrons, the more the valences, the more stable an atom is.
In B, false because atoms cannot readily gain or lose valence electrons as the number of valence electrons is determined by the column they are in.
In C, true because the more the valence electrons, the more the stability of an atom.
In D, true as electron placing is important and the reactivity of an atom is important.
So C and D are true!
Answer:
At a front, the two air masses have different densities, based on temperature, and do not easily mix. One air mass is lifted above the other, creating a low pressure zone.
Explanation:
Hope this helps!