A. Would be the correct answer :-)
Answer:
3.07 Cal/g
Explanation:
Step 1: Calculate the heat absorbed by the calorimeter
We will use the following expression.
Q = C × ΔT
where,
- C: heat capacity of the calorimeter (37.60 kJ/K = 37.60 kJ/°C)
- ΔT: temperature change (2.29 °C)
Q = 37.60 kJ/°C × 2.29 °C = 86.1 kJ
According to the law of conservation of energy, the heat released by the candy has the same magnitude as the heat absorbed by the calorimeter.
Step 2: Convert 86.1 kJ to Cal
We will use the conversion factor 1 Cal = 4.186 kJ.
86.1 kJ × 1 Cal/4.186 kJ = 20.6 Cal
Step 3: Calculate the number of Cal per gram of candy
20.6 Cal/6.70 g = 3.07 Cal/g
Answer:
3,85 g of Fe
Explanation:
1- The first thing to do is calculate the molar mass of the Fe2O3 compound. With the help of a periodic table, the weights of the atoms are searched, and the sum is made:
Molar mass of Fe2O3 = (2 x mass of Fe) + (3 x mass of O) = 2 x 55.88 g + 3 x 15.99 g = 159.65 g / mol
Then, one mole of Fe2O3 has a mass of 159.65 grams.
2- Then, the relationship between the Fe2O3 that will react and the iron to be produced. With the previous calculation, we can say that with one mole of Fe2O3, two moles of Fe can be produced. Passing this relationship to the molar masses, it would be as follows:
1 mole of Fe2O3_____ 2 moles of Fe
159.65 g of Fe2O3_____ 111.76 g of Fe
3- Finally, the calculation of the mass that can be produced of Fe is made, starting from 5.50 g of Fe2O3
159.65 g of Fe2O3 _____ 111.76 g of Fe
5.50 g of Fe2O3 ______ X = 3.85 g of Fe
<em>Calculation: 5.50 g x 111.76 g / 159.65 g = 3.85 g
</em>
The answer is that 3.85 g of Fe can be produced when 5.50 g of Fe2O3 react
Answer:
94.44
Explanation:
Volume is equal to Mass/Density so therefore, you do the mass which is 68.0 g/0.72 g/mL which is the density and get 94.44 mL because the g cancel each other out when it comes to the label!
Explanation:
The structure of Ferrarrisite Ca5(HAs O4)2(AsO4)2