Answer:
8.3ml
Explanation:
to get volume u have to divide 25g over the density, i rounded to the nearest tenth, if you don't want to then write out the full number with all the decimals
Electronegativity is your answer.
the degree or intensity of heat present in a substance or object, especially as expressed according to a comparative scale and shown by a thermometer or perceived by touch. So I would have to go with A.
Answer:
2.067 L ≅ 2.07 L.
Explanation:
- The balanced equation for the mentioned reaction is:
<em>CS₂(g) + 3O₂(g) → CO₂(g) + 2SO₂(g),</em>
It is clear that 1.0 mole of CS₂ react with 3.0 mole of O₂ to produce 1.0 mole of CO₂ and 2.0 moles of SO₂.
- At STP, 3.6 L of H₂ reacts with (?? L) of oxygen gas:
It is known that at STP: every 1.0 mol of any gas occupies 22.4 L.
<u><em>using cross multiplication:</em></u>
1.0 mol of O₂ represents → 22.4 L.
??? mol of O₂ represents → 3.1 L.
∴ 3.1 L of O₂ represents = (1.0 mol)(3.1 L)/(22.4 L) = 0.1384 mol.
- To find the no. of moles of SO₂ produced from 3.1 liters (0.1384 mol) of hydrogen:
<u><em>Using cross multiplication:</em></u>
3.0 mol of O₂ produce → 2.0 mol of SO₂, from stichiometry.
0.1384 mol of O₂ produce → ??? mol of SO₂.
∴ The no. of moles of SO₂ = (2.0 mol)(0.1384 mol)/(3.0 mol) = 0.09227 mol.
- Again, using cross multiplication:
1.0 mol of SO₂ represents → 22.4 L, at STP.
0.09227 mol of SO₂ represents → ??? L.
∴ The no. of liters of SO₂ will be produced = (0.09227 mol)(22.4 L)/(1.0 mol) = 2.067 L ≅ 2.07 L.
Answer:
Ideal gas law
Explanation:
The expression is the ideal gas law when properly written;
PV = nRT
where P is the pressure of the gas
V is the volume of the gas
n is the number of moles of the gas
R is the gas constant
T is the temperature
The ideal gas law is derieved from the three major gas laws;
--- Boyle's law, Charles's law and Avogadro's law