This problem is easily solvable because radioactivity equations are common and well-established. The pseudo-first reaction is written below:
A = A₀(1/2)^(t/h)
where
A is the final amount
A₀ is the original amount
t is the time
h is the half life
5,000 = A₀(1/2)^(24,000/6,000)
Solving for A₀,
<em>A₀ = 80,000 atoms</em>
<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.
That's the answer on that picture
Answer:
the compound contains C, H, and some other element of unknownidentity, so we can’t calculate the empirical formula
Explanation:
Mass of CO2 obtained = 3.14 g
Hence number of moles of CO2 = 3.14g/44.0 g = 0.0714 mol
The mass of the carbon in the sample = 0.0714 mol × 12.0g/mol = 0.857 g
Mass of H2O obtained = 1.29 g
Hence number of moles of H2O = 1.29g/18.0 g = 0.0717 mol
The mass of the carbon in the sample = 0.0717 mol × 1g/mol = 0.0717 g
% by mass of carbon = 0.857/1 ×100 = 85.7 %
% by mass of hydrogen = 0.0717/1 × 100 = 7.17%
Mass of carbon and hydrogen = 85.7 + 7.17 = 92.87 %
Hence, there must be an unidentified element that accounts for (100 - 92.87) = 7.13% of the compound.