1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
2 years ago
8

Please i need answer for part d

Physics
1 answer:
matrenka [14]2 years ago
4 0
It is c that’s what it is that’s the answer
You might be interested in
Which statement best describes plastic's ability to conduct electricity?
Nata [24]
<span>They are poor insulators because the electrons in the atom are tightly bound and unable to move between other atoms. 
</span>
3 0
3 years ago
Read 2 more answers
Convert 1 x 10-3 nm to m. given: 1 m = 1,000,000,000 nm
vampirchik [111]

Answer:

l m = 1000000000 nm

? = 0.001

= 0

5 0
3 years ago
40 POINTS!!! + BRAINLIEST!!!
Sergeu [11.5K]

Answer:

I think it is better if you read and shortly write my explanation

Explanation:

simple pendulum with no friction, mechanical energy is conserved. Total mechanical energy is a combination of kinetic energy and gravitational potential energy. As the pendulum swings back and forth, there is a constant exchange between kinetic energy and gravitational potential energy.

8 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
2 years ago
Read 2 more answers
A water balloon is hovering directly above the line join points ANB which are 4.6 km apart if the angles of elevation to the bal
Anna35 [415]

Answer:

Drawing the triangle:

H / x = tan 52.2 = 1.29

H / (4.6 - x) = tan 28.8 = .550

H = 1.29 x

H = .55 * 4.6 - .55 x

1.84 x = 2.53        combining equations

x = 1.38

4.6 - 1.38 = 3.22

Total base of triangle = 1.38 + 3.22 = 4.6

H / x = tan 52,2 = 1.29

H = 1.29 * 1.38 = 1.78 height of triangle

Check:

1.78 / 3.22 = tan 28.9    

This agrees with the given value of 28.8

7 0
2 years ago
Other questions:
  • Two boys want to balance a seesaw perfectly. One boy weighs 120 pounds and is sitting four feet from the fulcrum. The other boy
    7·1 answer
  • A car going 50 miles/hr accelerates to pass a truck. 5 seconds later the car is going 80 miles/hr. What is the acceleration of t
    14·1 answer
  • Melanie made the following diagram shown to represent some phases of the moon as seen from Earth.
    15·1 answer
  • If you are standing at Earth’s North Pole, which of the following will be directly overhead?
    10·1 answer
  • If a beaker of water is placed under a broiler so that the heating coil is above the beaker. It is observed that only the surfac
    7·1 answer
  • In a position vs. time graph depicting the motion of two different objects, the point at which the lines intersect is where the
    6·1 answer
  • A gas mixture has 10% O2, 50% Ar (40 gmw) and 40% Pu (244 gmw). What is the density of this mixture?
    8·1 answer
  • Let us be two cylindrical conductors connected in parallel, to which a potential difference of V = 170V is applied. The two cond
    10·1 answer
  • Angie, brad, and carlos are discussing a physics problem in which two identical bullets are fired with equal speeds at equal-mas
    8·1 answer
  • Determine the launch speed of a horizontally launched projectile that lands 26.3m from the base of a 19.3m high cliff
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!