1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
3 years ago
6

Uest1. State Newton's law of cooling.​

Physics
1 answer:
garik1379 [7]3 years ago
6 0

Answer:

Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant. This condition is generally met in heat conduction (where it is guaranteed by Fourier's law) as the thermal conductivity of most materials is only weakly dependent on temperature. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.

When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling

You might be interested in
A ball is thrown vertically upward with an initial velocity
ivolga24 [154]

Answer:

D

Explanation:

First we define our variables

V0=29.4

a=-9.8

V=0

We have to find the maximum displacement , which I will define as X

We use formula v^2=v0^2+2aX

All we do is substitute our values

0=29.4^2-19.6X

29.4^2=19.6X

X=29.4^2/19.6=44.1

5 0
2 years ago
Sam moves a box with a with a force of 400N a distance of 5 meters. How long did it take him to move the box if 20 Watts of powe
Vlad1618 [11]

Answer:

100s

Explanation:

there are many student how can not get answer on time and step by step. so there are a group of trusted physics experts who provide step by step answer. just join this wats up group.

4 0
3 years ago
Read 2 more answers
A coil of wire containing N turns is in an external magnetic field that is perpendicular to the plane of the coil and it steadil
krok68 [10]

Answer:

The Resultant Induced Emf in coil is 4∈.

Explanation:

Given that,

A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.

To find :-

find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).

So,

   Emf induced in the coil represented by formula

                          ∈  =   -N\frac{d\phi}{dt}                                  ...................(1)

                                          Where:

                                                    .   \phi = BAcos\theta     { B is magnetic field }

                                                                                 {A is cross-sectional area}

                                                    .  N = No. of turns in coil.

                                                    .  \frac{d\phi}{dt} = Rate change of induced Emf.

Here,

Considering the case :-

                                    N1 = 2N  &      \frac{d\phi1}{dt} = 2\frac{d\phi}{dt}

Putting these value in the equation (1) and finding the  new emf induced (∈1)

                           

                                      ∈1 =-N1\times\frac{d\phi1}{dt}

                                      ∈1 =-2N\times2\frac{d\phi}{dt}

                                       ∈1 =4 [-N\times\frac{d\phi}{dt}]

                                        ∈1 = 4∈             ...............{from Equation (1)}      

Hence,

The Resultant Induced Emf in coil is 4∈.        

                           

8 0
3 years ago
I need help with answer 51.
Troyanec [42]

Answer:

2

Explanation:

5 0
2 years ago
Which of the following substances can be separated into several elements?
julia-pushkina [17]

Answer: C

Explanation: Air

Hope this helps! Brainlist Plz?

3 0
3 years ago
Read 2 more answers
Other questions:
  • A dog barks in a park and hears its echo after 0.5 seconds. The sound of its bark got reflected by a nearby building. The sound
    7·1 answer
  • If atmospheric pressure on a certain day is 749 mmhg, what is the partial pressure of nitrogen, given that nitrogen is about 78%
    14·1 answer
  • How are the electric field lines around a positive charge affected when a second positive charge is near it?
    7·2 answers
  • Which definition most accurately describes the term emergent literacy ?
    10·2 answers
  • Isaac drops a rubber ball drom height of 2.0m and it bounces to a height of 1.5m. a) What fraction of it's initial energy is los
    5·1 answer
  • What is the definition of recoil velocity?
    8·2 answers
  • What are examples of a solution in solids, liquids, and gases
    5·1 answer
  • Waves transfer _________________, not the _____________ with it. A ______________________ causes particles in matter to move bac
    9·1 answer
  • Please help!!! what is the main point of paragraph 3?
    15·2 answers
  • Explain about kinetic theory​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!