The formula of the hydrate = CuSO₄• 3H₂O
<h3>Further explanation</h3>
Given
4.175 grams sample CuSO₄• xH₂O
3.120 grams anhydrous compound CuSO₄
Required
The formula
Solution
mass of H₂O driven off :
= 4.175 - 3.12
= 1.055 g
MW CuSO₄ = 159.5 g/mol
MW H₂O = 18 g/mol
mol ratio of CuSO₄ : H₂O :
= 3.12/159.5 : 1.055/18
= 0.01956 : 0.05861
= 1 : 3
Three resonance structures can be drawn for the allyl cation while two resonance structures can be drawn for the amidate ion.
Sometimes, we cannot fully describe the bonding in a chemical specie using a single chemical structure. In such cases, we have to use a number of structures which cooperatively represent the actual bonding in the molecule. These structures are called resonance or canonical structures.
The resonance structures of the allyl cation and the amidate ion are shown in the images attached to this answer. These structures show the different bonding extremes in these organic ions.
Learn more: brainly.com/question/4933048
Answer:
P₂ = 1.05 atm
Explanation:
Given data:
Initial temperature = 24.0 °C (24+273 = 297 K)
Initial pressure = 0.900 atm
Final pressure = ?
Final temperature = 75 °C (75 + 273 =348 K)
Volume = constant
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
0.900 atm / 297 K = P₂/348 K
P₂ = 0.900 atm × 348 K / 297 K
P₂ = 313.2 atm. K /297 K
P₂ = 1.05 atm
Answer:
Thus, random error primarily affects precision. Typically, random error affects the last significant digit of a measurement. The main reasons for random error are limitations of instruments, environmental factors, and slight variations in procedure.
Explanation: