Answer:

Explanation:
For this exercise we must use the principle of conservation of energy
starting point. The proton very far from the nucleus
Em₀ = K = ½ m v²
final point. The point where the proton is stopped (v = 0)
Em_f = U = q V
where the potential is
V = k Ze / r²
Let us consider that all the charge of the nucleus is in the center, therefore r is the distance from this point to the proton that is approaching
Energy is conserved
Em₀ = Em_f
½ m v² = e (
)
with this expression we can find the closest approach distance (r)
Answer:
Flutter
Explanation:
Flutter is a type of arrhythmia that causes very fast and regular ryth of the atria of about 250 beats per minute.
Arrhythmia can be defined as any sort of irregularity heart rate or rhythm is also called as dysrhythmia.
Arrhythmias can be categorized as heart block, bradycardia, tachycardia, fibrillation, flutter, sick sinus syndrome, and is diagnosed by Electrocardiography.
In Flutter, the heart chambers do get sufficient time to get filled with blood completely prior to next contraction.
Answer:
20.5s
Explanation:
Given parameters:
Distance = 30m
Unknown:
Time = ?
Solution:
The time it will take to hop a distance of 30m using the speed for the 5m trial is the duration of the trip.
The speed for the 5m trial = 1.46m/s
Now;
Speed = 
Distance = speed x time
time = 
Input the parameters and solve;
time =
= 20.5s
Answer:
c. 0.12 m/s
Explanation:
by using momentum formula 
we get

The first law states that the internal energy change of that system is given by Q − W . Since added heat increases the internal energy of a system, Q is positive when added to the system and negative when removed from the system.