1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimulka [17.4K]
3 years ago
8

As the proton approaches the uranium nucleus, the repulsive force slows down the proton until it comes momentarily to rest, afte

r which the proton moves away from the uranium nucleus. How close to the uranium nucleus does the proton get
Physics
1 answer:
Klio2033 [76]3 years ago
3 0

Answer:

 r^2 = \frac{ 2 k  \ Ze^2}{ 2m}

Explanation:

For this exercise we must use the principle of conservation of energy

starting point. The proton very far from the nucleus

          Em₀ = K = ½ m v²

final point. The point where the proton is stopped (v = 0)

          Em_f = U = q V

where the potential is

          V = k Ze / r²

Let us consider that all the charge of the nucleus is in the center, therefore r is the distance from this point to the proton that is approaching

Energy is conserved

          Em₀ = Em_f

           ½ m v² = e (k \frac{Ze}{r^2})

          r^2 = \frac{ 2 k  \ Ze^2}{ 2m}

with this expression we can find the closest approach distance (r)

You might be interested in
When is the electric flux on a section of a closed surface positive?.
rodikova [14]
When the electric field pierces outward through the section.
5 0
2 years ago
Refer to the first diagram. What is the weight of the person hanging on the end of the seesaw in Newtons?
irina1246 [14]

Due to equilibrium of moments:

1) The weight of the person hanging on the left is 250 N

2) The 400 N person is 3 m from the fulcrum

3) The weight of the board is 200 N

Explanation:

1)

To solve the problem, we use the principle of equilibrium of moments.

In fact, for the seesaw to be in equilibrium, the total clockwise moment must be equal to the total anticlockwise moment.

The moment of a force is defined as:

M=Fd

where

F is the magnitude of the force

d is the perpendicular distance of the force from the fulcrum

In the first diagram:

- The clockwise moment is due to the person on the right is

M_c = W_2 d_2

where W_2 = 500 N is the weight of the person and d_2 = 2 m is its distance from the fulcrum

- The anticlockwise moment due to the person hanging on the left is

M_a = W_1 d_1

where W_1 is his weight and d_1 = 4 m is the distance from the fulcrum

Since the seesaw is in equilibrium,

M_c = M_a

So we can find the weight of the person on the left:

W_1 d_1 = W_2 d_2\\W_1 = \frac{W_2 d_2}{d_1}=\frac{(500)(2)}{4}=250 N

2)

Again, for the seesaw to be in equilibrium, the total clockwise moment must be equal to the total anticlockwise moment.

- The clockwise moment due to the person on the right is

M_c = W_2 d_2

where W_2 = 400 N is the weight of the person and d_2 is its distance from the fulcrum

- The anticlockwise moment due to the person on the left is

M_a = W_1 d_1

where W_1 = 300 N is his weight and d_1 = 4 m is the distance from the fulcrum.

Since the seesaw is in equilibrium,

M_c = M_a

So we can find the distance of the person on the right:

W_1 d_1 = W_2 d_2\\d_2 = \frac{W_1 d_1}{W_2}=\frac{(300)(4)}{400}=3 m

3)

As before, for the seesaw to be in equilibrium, the total clockwise moment must be equal to the total anticlockwise moment.

- The clockwise moment around the fulcrum this time is due to the weight of the seesaw:

M_c = W_2 d_2

where W_2 is the weight of the seesaw and d_2 = 3 m is the distance of its centre of mass from the fulcrum

- The anticlockwise moment due to the person on the left is

M_a = W_1 d_1

where W_1 = 600 N is his weight and d_1 = 1 m is the distance from the fulcrum

Since the seesaw is in equilibrium,

M_c = M_a

So we can find the weight of the seesaw:

W_1 d_1 = W_2 d_2\\W_2 =\frac{W_1 d_1}{d_2}= \frac{(600)(1)}{3}=200 N

#LearnwithBrainly

8 0
3 years ago
Laws that implemented the consumers' right to be informed forbid __________.
Reptile [31]

Laws that implemented the consumers' right to be informed forbid misleading advertising.

Answer is C.

4 0
2 years ago
Read 2 more answers
What is the main function of a cell
Andre45 [30]

Answer:

they provide structure and support, facilitate growth through mitosis, allow passive and active transport, produce energy, create metabolic reactions and aid in reproduction.

Explanation:

they provide six main functions.

5 0
3 years ago
Your cousin Jannik skis down a blue square ski slope, with an initial speed of 3.6 m/s. He travels 15 m down the mountain side b
fenix001 [56]

Answer: The loss of energy due to friction is equal to 1,253 J.

Explanation:

The problem tells us that the skier has an initial speed of 3.6 m/s, which means that his initial kinetic energy is as follows:

K₁ = 1/2 m v₁² = 1/2 . 58.0 Kg. (3.6)² (m/s)² =  376 J

After coming to a  flat landing, his final speed is 7.8 m/s, so the final kinetic energy is as follows:

K₂ = 1/2 m v₂² = 1/2. 58.0 Kg. (7.8)² (m/s)² = 1,764 J

Now, when skying down the slope the increase in kinetic energy only can come from another type of energy, in this case, gravitational potential energy.

If we take the ground flat level as a Zero reference, the initial gravitational potential energy, can be written as follows, by definition:

U₁ = m.g. h (1)

Now, we don't know the value of the height h, but we know that the incline has a 18º angle above the horizontal, and that the distance travelled along the incline is 15 m.

By definition, the sinus of an angle, is equal to the proportion between the height and the hypotenuse , so we can write the following equation:

sin 18º = h / 15 m ⇒ h = 15 m. sin 18º = 4.6 m

Replacing in (1), we get:

U₁ = 58.0 Kg. 9.8 m/s². 4.6 m = 2,641 J

So, we can get the total initial mechanical energy, as follows:

E₁ = K₁ + U₁ = 376 J + 2,641 J = 3,017 J

After arriving to the flat zone, all potential energy has become in kinetic energy, even though not completely, due to the effect of friction.

This remaining kinetic energy can be written as follows:

E₂ = K₂ = 1,764 J

The difference E₂-E₁, is the loss of energy due to friction forces acting during the travel along the 15 m path, and is as follows:

ΔE= E₂ - E₁ = 1,764 J - 3,017 J = -1,253 J

8 0
3 years ago
Other questions:
  • Which two conditions must exist in order for radiation to occur?
    15·2 answers
  • How much work is done on an object if 10 newtons of force are applied to the object and it moves 2 meters?
    12·1 answer
  • When is a body said to be motion (movement )?
    9·1 answer
  • An antitussive is a A. non-productive cough. B. cough-suppressant medication. C. cough medication used for drying up secretions.
    12·2 answers
  • A horse ran 5.75m/s for 3.5min, how far did it travel
    12·1 answer
  • Describe how to properly measure the volume of a liquid?
    8·1 answer
  • OOF it is the same for both
    11·2 answers
  • An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 278C, and 75
    13·1 answer
  • 1.00 x 10^8 kg of clear liquid (specific heat
    7·1 answer
  • A car travels from 55mps to 10 seconds. What is the acceleration?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!