Answer: The energy (heat) required to convert 52.0 g of ice at –10.0°C to steam at 100°C is 157.8 kJ
Explanation:
Using this formular, q = [mCpΔT] and = [nΔHfusion]
The energy that is needed in the different physical changes is thus:
The heat needed to raise the ice temperature from -10.0°C to 0°C is given as as:
q = [mCpΔT]
q = 52.0 x 2.09 x 10
q = 1.09 kJ
While from 0°C to 100°C is calculated as:
q = [mCpΔT]
q = 52.0 x 4.18 x 100
q = 21.74 kJ
And for fusion at 0°C is called Heat of fusion and would be given as:
q = n ΔHfusion
q = 52.0 / 18.02 x 6.02
q = 17.38 kJ
And that required for vaporization at 100°C is called Heat of vaporization and it's given as:
q = n ΔHvaporization
q = 52.0 / 18.02 x 40.7
q = 117.45 kJ
Add up all the energy gives 157.8 kJ
Answer:
The answer is the photo attached
Explanation:
Answer : The energy released by an electron in a mercury atom to produce a photon of this light must be, 
Explanation : Given,
Wavelength = 
conversion used : 
Formula used :

As, 
So, 
where,
= frequency
h = Planck's constant = 
= wavelength = 
c = speed of light = 
Now put all the given values in the above formula, we get:


Therefore, the energy released by an electron in a mercury atom to produce a photon of this light must be, 
A straight line on a distance va time graph represents constant speed